
MATLAB® 7
C and Fortran API Reference

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
MATLAB® C and Fortran API Reference
© COPYRIGHT 1984–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
December 1996 First Printing New for MATLAB 5 (Release 8)
May 1997 Online only Revised for MATLAB 5.1 (Release 9)
January 1998 Online Only Revised for MATLAB 5.2 (Release 10)
January 1999 Online Only Revised for MATLAB 5.3 (Release 11)
September 2000 Online Only Revised for MATLAB 6.0 (Release 12)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
January 2003 Online only Revised for MATLAB 6.5.1 (Release 13SP1)
June 2004 Online only Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised and renamed for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised and renamed for MATLAB 7.5 (Release 2007b)
March 2008 Online only Revised and renamed for MATLAB 7.6 (Release 2008a)
October 2008 Online only Revised and renamed for MATLAB 7.7 (Release 2008b)

Contents

API Reference
1

MAT-File Access . 1-2

MX Array Manipulation . 1-2

MEX-Files . 1-10

MATLAB Engine . 1-11

API Reference
2

Index

v

vi Contents

1

API Reference

MAT-File Access (p. 1-2) Incorporate and use MATLAB® data
in C and Fortran programs

MX Array Manipulation (p. 1-2) Create and manipulate MATLAB
arrays from C and Fortran MEX and
engine routines

MEX-Files (p. 1-10) Perform operations in MATLAB
environment from C and Fortran
MEX-files

MATLAB Engine (p. 1-11) Call MATLAB software from C and
Fortran programs

See also “External Interfaces” in the MATLAB Function Reference for
interfaces to DLLs, Sun™ Java™ programming language, Microsoft®
Component Object Model (COM) and Microsoft® ActiveX® technologies, Web
services, and serial port devices.

1 API Reference

MAT-File Access
matClose (C and Fortran) Close MAT-file
matDeleteVariable (C and
Fortran)

Delete named mxArray from
MAT-file

MATFile (C and Fortran) Type for a MAT-file
matGetDir (C and Fortran) Get directory of mxArrays in

MAT-file
matGetFp (C) Get file pointer to MAT-file
matGetNextVariable (C and
Fortran)

Read next mxArray from MAT-file

matGetNextVariableInfo (C and
Fortran)

Load array header information only

matGetVariable (C and Fortran) Read mxArray from MAT-files
matGetVariableInfo (C and
Fortran)

Load array header information only

matOpen (C and Fortran) Open MAT-file
matPutVariable (C and Fortran) Write mxArrays to MAT-files
matPutVariableAsGlobal (C and
Fortran)

Put mxArrays into MAT-files as
originating from global workspace

MX Array Manipulation
mwIndex (C and Fortran) Type for index values
mwPointer (Fortran) Declare appropriate pointer type for

platform
mwSize (C and Fortran) Type for size values
mxAddField (C and Fortran) Add field to structure array
mxArray (C and Fortran) Type for a MATLAB array

1-2

MX Array Manipulation

mxArrayToString (C) Convert array to string
mxAssert (C) Check assertion value for debugging

purposes
mxAssertS (C) Check assertion value without

printing assertion text
mxCalcSingleSubscript (C and
Fortran)

Offset from first element to desired
element

mxCalloc (C and Fortran) Allocate dynamic memory for array
using MATLAB memory manager

mxChar (C) Type for string mxArray
mxClassID (C) Enumerated value identifying class

of mxArray
mxClassIDFromClassName
(Fortran)

Identifier corresponding to class

mxComplexity (C) Flag specifying whether mxArray
has imaginary components

mxCopyCharacterToPtr (Fortran) Copy character values from Fortran
array to pointer array

mxCopyComplex16ToPtr (Fortran) Copy COMPLEX*16 values from
Fortran array to pointer array

mxCopyComplex8ToPtr (Fortran) Copy COMPLEX*8 values from Fortran
array to pointer array

mxCopyInteger1ToPtr (Fortran) Copy INTEGER*1 values from Fortran
array to pointer array

mxCopyInteger2ToPtr (Fortran) Copy INTEGER*2 values from Fortran
array to pointer array

mxCopyInteger4ToPtr (Fortran) Copy INTEGER*4 values from Fortran
array to pointer array

mxCopyPtrToCharacter (Fortran) Copy character values from pointer
array to Fortran array

mxCopyPtrToComplex16 (Fortran) Copy COMPLEX*16 values from
pointer array to Fortran array

1-3

1 API Reference

mxCopyPtrToComplex8 (Fortran) Copy COMPLEX*8 values from pointer
array to Fortran array

mxCopyPtrToInteger1 (Fortran) Copy INTEGER*1 values from pointer
array to Fortran array

mxCopyPtrToInteger2 (Fortran) Copy INTEGER*2 values from pointer
array to Fortran array

mxCopyPtrToInteger4 (Fortran) Copy INTEGER*4 values from pointer
array to Fortran array

mxCopyPtrToPtrArray (Fortran) Copy pointer values from pointer
array to Fortran array

mxCopyPtrToReal4 (Fortran) Copy REAL*4 values from pointer
array to Fortran array

mxCopyPtrToReal8 (Fortran) Copy REAL*8 values from pointer
array to Fortran array

mxCopyReal4ToPtr (Fortran) Copy REAL*4 values from Fortran
array to pointer array

mxCopyReal8ToPtr (Fortran) Copy REAL*8 values from Fortran
array to pointer array

mxCreateCellArray (C and
Fortran)

Create unpopulated N-D cell
mxArray

mxCreateCellMatrix (C and
Fortran)

Create unpopulated 2-D cell mxArray

mxCreateCharArray (C and
Fortran)

Create unpopulated N-D string
mxArray

mxCreateCharMatrixFromStrings
(C and Fortran)

Create populated 2-D string mxArray

mxCreateDoubleMatrix (C and
Fortran)

Create 2-D, double-precision,
floating-point mxArray initialized to
0

mxCreateDoubleScalar (C and
Fortran)

Create scalar, double-precision array
initialized to specified value

mxCreateLogicalArray (C) Create N-D logical mxArray
initialized to false

1-4

MX Array Manipulation

mxCreateLogicalMatrix (C) Create 2-D, logical mxArray
initialized to false

mxCreateLogicalScalar (C) Create scalar, logical mxArray
mxCreateNumericArray (C and
Fortran)

Create unpopulated N-D numeric
mxArray

mxCreateNumericMatrix (C and
Fortran)

Create numeric matrix and initialize
data elements to 0

mxCreateSparse (C and Fortran) Create 2-D unpopulated sparse
mxArray

mxCreateSparseLogicalMatrix
(C)

Create unpopulated 2-D, sparse,
logical mxArray

mxCreateString (C and Fortran) Create 1-by-N string mxArray
initialized to specified string

mxCreateStructArray (C and
Fortran)

Create unpopulated N-D structure
mxArray

mxCreateStructMatrix (C and
Fortran)

Create unpopulated 2-D structure
mxArray

mxDestroyArray (C and Fortran) Free dynamic memory allocated by
mxCreate* functions

mxDuplicateArray (C and
Fortran)

Make deep copy of array

mxFree (C and Fortran) Free dynamic memory allocated by
mxCalloc, mxMalloc, or mxRealloc

mxGetCell (C and Fortran) Get contents of mxArray cell
mxGetChars (C) Get pointer to character array data
mxGetClassID (C and Fortran) Get class of mxArray
mxGetClassName (C and Fortran) Get class of mxArray as string
mxGetData (C and Fortran) Get pointer to data
mxGetDimensions (C and
Fortran)

Get pointer to dimensions array

1-5

1 API Reference

mxGetElementSize (C and
Fortran)

Get number of bytes required to
store each data element

mxGetEps (C and Fortran) Get value of eps
mxGetField (C and Fortran) Get field value, given field name and

index into structure array
mxGetFieldByNumber (C and
Fortran)

Get field value, given field number
and index into structure array

mxGetFieldNameByNumber (C and
Fortran)

Get field name, given field number
in structure array

mxGetFieldNumber (C and
Fortran)

Get field number, given field name
in structure array

mxGetImagData (C and Fortran) Get pointer to imaginary data of
mxArray

mxGetInf (C and Fortran) Get value of infinity
mxGetIr (C and Fortran) Get ir array of sparse matrix
mxGetJc (C and Fortran) Get jc array of sparse matrix
mxGetLogicals (C) Get pointer to logical array data
mxGetM (C and Fortran) Get number of rows in mxArray

mxGetN (C and Fortran) Get number of columns in mxArray

mxGetNaN (C and Fortran) Get value of NaN (Not-a-Number)
mxGetNumberOfDimensions (C and
Fortran)

Get number of dimensions in
mxArray

mxGetNumberOfElements (C and
Fortran)

Get number of elements in mxArray

mxGetNumberOfFields (C and
Fortran)

Get number of fields in structure
mxArray

mxGetNzmax (C and Fortran) Get number of elements in ir, pr,
and pi arrays

mxGetPi (C and Fortran) Get imaginary data elements in
mxArray

mxGetPr (C and Fortran) Get real data elements in mxArray

1-6

MX Array Manipulation

mxGetProperty (C and Fortran) Get property value of MATLAB class
object

mxGetScalar (C and Fortran) Get real component of first data
element in mxArray

mxGetString (C and Fortran) Copy string mxArray to C-style string
mxIsCell (C and Fortran) Determine whether input is cell

mxArray

mxIsChar (C and Fortran) Determine whether input is string
mxArray

mxIsClass (C and Fortran) Determine whether mxArray is
member of specified class

mxIsComplex (C and Fortran) Determine whether data is complex
mxIsDouble (C and Fortran) Determine whether mxArray

represents data as double-precision,
floating-point numbers

mxIsEmpty (C and Fortran) Determine whether mxArray is
empty

mxIsFinite (C and Fortran) Determine whether input is finite
mxIsFromGlobalWS (C and
Fortran)

Determine whether mxArray was
copied from MATLAB global
workspace

mxIsInf (C and Fortran) Determine whether input is infinite
mxIsInt16 (C and Fortran) Determine whether mxArray

represents data as signed 16-bit
integers

mxIsInt32 (C and Fortran) Determine whether mxArray
represents data as signed 32-bit
integers

mxIsInt64 (C and Fortran) Determine whether mxArray
represents data as signed 64-bit
integers

1-7

1 API Reference

mxIsInt8 (C and Fortran) Determine whether mxArray
represents data as signed 8-bit
integers

mxIsLogical (C and Fortran) Determine whether mxArray is of
type mxLogical

mxIsLogicalScalar (C) Determine whether scalar mxArray
is of type mxLogical

mxIsLogicalScalarTrue (C) Determine whether scalar mxArray
of type mxLogical is true

mxIsNaN (C and Fortran) Determine whether input is NaN
(Not-a-Number)

mxIsNumeric (C and Fortran) Determine whether mxArray is
numeric

mxIsSingle (C and Fortran) Determine whether mxArray
represents data as single-precision,
floating-point numbers

mxIsSparse (C and Fortran) Determine whether input is sparse
mxArray

mxIsStruct (C and Fortran) Determine whether input is
structure mxArray

mxIsUint16 (C and Fortran) Determine whether mxArray
represents data as unsigned 16-bit
integers

mxIsUint32 (C and Fortran) Determine whether mxArray
represents data as unsigned 32-bit
integers

mxIsUint64 (C and Fortran) Determine whether mxArray
represents data as unsigned 64-bit
integers

mxIsUint8 (C and Fortran) Determine whether mxArray
represents data as unsigned 8-bit
integers

mxLogical (C) Type for logical mxArray

1-8

MX Array Manipulation

mxMalloc (C and Fortran) Allocate dynamic memory using
MATLAB memory manager

mxRealloc (C and Fortran) Reallocate memory
mxRemoveField (C and Fortran) Remove field from structure array
mxSetCell (C and Fortran) Set value of one cell of mxArray
mxSetClassName (C) Convert structure array to MATLAB

object array
mxSetData (C and Fortran) Set pointer to data
mxSetDimensions (C and
Fortran)

Modify number of dimensions and
size of each dimension

mxSetField (C and Fortran) Set structure array field, given field
name and index

mxSetFieldByNumber (C and
Fortran)

Set structure array field, given field
number and index

mxSetImagData (C and Fortran) Set imaginary data pointer for
mxArray

mxSetIr (C and Fortran) Set ir array of sparse mxArray
mxSetJc (C and Fortran) Set jc array of sparse mxArray
mxSetM (C and Fortran) Set number of rows in mxArray

mxSetN (C and Fortran) Set number of columns in mxArray

mxSetNzmax (C and Fortran) Set storage space for nonzero
elements

mxSetPi (C and Fortran) Set new imaginary data for mxArray
mxSetPr (C and Fortran) Set new real data for mxArray
mxSetProperty (C and Fortran) Set value of property of MATLAB

class object

1-9

1 API Reference

MEX-Files
mexAtExit (C and Fortran) Register function to call when

MEX-function is cleared or MATLAB
software terminates

mexCallMATLAB (C and Fortran) Call MATLAB function or
user-defined M-file or MEX-file

mexCallMATLABWithTrap (C and
Fortran)

Call MATLAB function, user-defined
M-file, or MEX-file and capture error
information

mexErrMsgIdAndTxt (C and
Fortran)

Issue error message with identifier
and return to MATLAB prompt

mexErrMsgTxt (C and Fortran) Issue error message and return to
MATLAB prompt

mexEvalString (C and Fortran) Execute MATLAB command in
caller’s workspace

mexEvalStringWithTrap (C and
Fortran)

Execute MATLAB command in
caller’s workspace and capture error
information

mexFunction (C and Fortran) Entry point to C MEX-file
mexFunctionName (C and
Fortran)

Name of current MEX-function

mexGet (C) Get value of specified Handle
Graphics® property

mexGetVariable (C and Fortran) Get copy of variable from specified
workspace

mexGetVariablePtr (C and
Fortran)

Get read-only pointer to variable
from another workspace

mexIsGlobal (C and Fortran) Determine whether mxArray has
global scope

mexIsLocked (C and Fortran) Determine whether MEX-file is
locked

1-10

MATLAB® Engine

mexLock (C and Fortran) Prevent MEX-file from being cleared
from memory

mexMakeArrayPersistent (C and
Fortran)

Make mxArray persist after MEX-file
completes

mexMakeMemoryPersistent (C and
Fortran)

Make memory allocated by MATLAB
software persist after MEX-function
completes

mexPrintf (C and Fortran) ANSI® C printf-style output routine
mexPutVariable (C and Fortran) Copy mxArray from MEX-function

into specified workspace
mexSet (C) Set value of specified Handle

Graphics property
mexSetTrapFlag (C and Fortran) Control response of mexCallMATLAB

to errors
mexUnlock (C and Fortran) Allow MEX-file to be cleared from

memory
mexWarnMsgIdAndTxt (C and
Fortran)

Issue warning message with
identifier

mexWarnMsgTxt (C and Fortran) Issue warning message

MATLAB Engine
engClose (C and Fortran) Quit MATLAB engine session
engEvalString (C and Fortran) Evaluate expression in string
engGetVariable (C and Fortran) Copy variable from MATLAB engine

workspace
engGetVisible (C) Determine visibility of MATLAB

engine session
Engine (C) Type for a MATLAB engine
engOpen (C and Fortran) Start MATLAB engine session

1-11

1 API Reference

engOpenSingleUse (C) Start MATLAB engine session for
single, nonshared use

engOutputBuffer (C and
Fortran)

Specify buffer for MATLAB output

engPutVariable (C and Fortran) Put variables into MATLAB engine
workspace

engSetVisible (C) Show or hide MATLAB engine
session

1-12

2

API Reference

engClose (C and Fortran)

Purpose Quit MATLAB engine session

C Syntax #include "engine.h"
int engClose(Engine *ep);

Fortran
Syntax

integer*4 engClose(ep)
mwPointer ep

Arguments ep
Engine pointer

Returns 0 on success, and 1 otherwise. Possible failure includes attempting to
terminate a MATLAB engine session that was already terminated.

Description This routine sends a quit command to the MATLAB engine session
and closes the connection.

C
Examples

UNIX®1 Operating Systems

See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a C program.

Microsoft Windows® Operating Systems

See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB
engine functions from a C program for Windows systems.

Fortran
Examples

See fengdemo.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a Fortran program.

See Also engOpen

1. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-2

engEvalString (C and Fortran)

Purpose Evaluate expression in string

C Syntax #include "engine.h"
int engEvalString(Engine *ep,const char *string);

Fortran
Syntax

integer*4 engEvalString(ep, string)
mwPointer ep
character*(*) string

Arguments ep
Engine pointer

string
String to execute

Returns 0 if the command was evaluated by the MATLAB engine session, and a
nonzero value if unsuccessful. Possible reasons for failure include the
engine session is no longer running or the engine pointer is invalid
or NULL.

Error
Handling

If string detects an error, MATLAB terminates and returns control
to the MATLAB prompt.

Description engEvalString evaluates the expression contained in string for the
MATLAB engine session, ep, previously started by engOpen.

2-3

engEvalString (C and Fortran)

UNIX2 Operating Systems

On UNIX systems, engEvalString sends commands to the MATLAB
workspace by writing down a pipe connected to the MATLAB stdin
process. Any output resulting from the command that ordinarily
appears on the screen is read back from stdout into the buffer defined
by engOutputBuffer.

To turn off output buffering in C, use:

engOutputBuffer(ep, NULL, 0);

To turn off output buffering in Fortran, use:

engOutputBuffer(ep, '')

Microsoft Windows Operating Systems

On a Windows system, engEvalString communicates with MATLAB
software using a Component Object Model (COM) interface.

C
Examples

UNIX Operating Systems

See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a C program.

Windows Operating Systems

See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB
engine functions from a C program for Windows systems.

Fortran
Examples

See fengdemo.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a Fortran program.

See Also engOpen, engOutputBuffer

2. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-4

engGetVariable (C and Fortran)

Purpose Copy variable from MATLAB engine workspace

C Syntax #include "engine.h"
mxArray *engGetVariable(Engine *ep, const char *name);

Fortran
Syntax

mwPointer engGetVariable(ep, name)
mwPointer ep
character*(*) name

Arguments ep
Engine pointer

name
Name of mxArray to get from MATLAB workspace

Returns A pointer to a newly allocated mxArray structure, or NULL if the attempt
fails. engGetVariable fails if the named variable does not exist.

Description engGetVariable reads the named mxArray from the MATLAB engine
session associated with ep.

Use mxDestroyArray to destroy the mxArray created by this routine
when you are finished with it.

2-5

engGetVariable (C and Fortran)

C
Examples

UNIX3 Operating Systems

See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a C program.

Microsoft Windows Operating Systems

See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB
engine functions from a C program for Windows systems.

See Also engPutVariable, mxDestroyArray

3. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-6

engGetVisible (C)

Purpose Determine visibility of MATLAB engine session

C Syntax #include "engine.h"
int engGetVisible(Engine *ep, bool *value);

Arguments ep
Engine pointer

value
Pointer to value returned from engGetVisible

Returns Microsoft Windows Operating Systems Only

0 on success, and 1 otherwise.

Description engGetVisible returns the current visibility setting for MATLAB
engine session, ep. A visible engine session runs in a window on
the Windows desktop, thus making the engine available for user
interaction. An invisible session is hidden from the user by removing
it from the desktop.

Examples The following code opens engine session ep and disables its visibility.

Engine *ep;
bool vis;

ep = engOpen(NULL);
engSetVisible(ep, 0);

To determine the current visibility setting, use:

engGetVisible(ep, &vis);

See Also engSetVisible

2-7

Engine (C)

Purpose Type for a MATLAB engine

Description A handle to a MATLAB engine object.

Engine is a C language opaque type.

You can call MATLAB software as a computational engine by writing C
and Fortran programs that use the MATLAB engine library, described
in “MATLAB Engine” on page 1-11. Engine is the link between your
program and the separate MATLAB engine process.

The header file containing this type is:

#include "engine.h"

Examples The example engwindemo.c (in your
matlabroot/extern/examples/eng_mat directory) shows how to plot
position versus time for a falling object in a MATLAB figure window.

The engOpen function starts the MATLAB process, returning an Engine
variable. You use this handle for all calls to the MATLAB workspace.

The mxCreateDoubleMatrix function creates an mxArray named T. The
C function memcpy copies your time data (initialized in engwindemo.c)
into T.

The engPutVariable function puts T into the MATLAB workspace. Now
you can use this variable to calculate distance D. The engEvalString
function evaluates the expression D = .5.*(-9.8).*T.^2.

Next, various MATLAB plot functions, like plot(T,D), display the
graph.

Calls to the engClose and mxDestroyArray functions complete the
procedure.

Other sample programs, also found in your
matlabroot\extern\examples\eng_mat directory, that show you
how to use Engine are:

2-8

Engine (C)

• engdemo.c shows how to call the MATLAB engine functions from a
C program.

• engwindemo.c show how to call the MATLAB engine functions from
a C program for Windows systems.

• fengdemo.F shows how to call the MATLAB engine functions from
a Fortran program.

See Also engOpen

2-9

engOpen (C and Fortran)

Purpose Start MATLAB engine session

C Syntax #include "engine.h"
Engine *engOpen(const char *startcmd);

Fortran
Syntax

mwPointer engOpen(startcmd)
character*(*) startcmd

Arguments startcmd
String to start the MATLAB process. On Windows systems, the
startcmd string must be NULL.

Returns A pointer to an engine handle or NULL if the open fails.

Description This routine allows you to start a MATLAB process for the purpose of
using MATLAB software as a computational engine.

engOpen starts a MATLAB process using the command specified in the
string startcmd, establishes a connection, and returns a unique engine
identifier, or NULL if the open fails.

On UNIX4 systems, if startcmd is NULL or the empty string, engOpen
starts a MATLAB process on the current host using the command
matlab. If startcmd is a hostname, engOpen starts a MATLAB process
on the designated host by embedding the specified hostname string
into the larger string:

"rsh hostname \"/bin/csh -c 'setenv DISPLAY\
hostname:0; matlab'\""

If startcmd is any other string (has white space in it, or
nonalphanumeric characters), the string is executed literally to start
a MATLAB process.

On UNIX systems, engOpen performs the following steps:

4. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-10

engOpen (C and Fortran)

1 Creates two pipes.

2 Forks a new process and sets up the pipes to pass stdin and stdout
from MATLAB (parent) software to two file descriptors in the engine
program (child).

3 Executes a command to run MATLAB software (rsh for remote
execution).

On Windows systems, engOpen opens a COM channel to MATLAB. This
starts the MATLAB software that was registered during installation. If
you did not register during installation, on the command line you can
enter the command:

matlab /regserver

See “Introducing MATLAB COM Integration” for additional details.

C
Examples

UNIX Operating Systems

See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a C program.

Microsoft Windows Operating Systems

See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB
engine functions from a C program for Windows systems.

Fortran
Examples

See fengdemo.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a Fortran program.

2-11

engOpenSingleUse (C)

Purpose Start MATLAB engine session for single, nonshared use

C Syntax #include "engine.h"
Engine *engOpenSingleUse(const char *startcmd, void *dcom,

int *retstatus);

Arguments startcmd
String to start MATLAB process. On Microsoft Windows systems,
the startcmd string must be NULL.

dcom
Reserved for future use; must be NULL.

retstatus
Return status; possible cause of failure.

Returns Microsoft Windows Operating Systems Only

A pointer to an engine handle or NULL if the open fails.

UNIX5 Operating Systems

This routine is not supported on UNIX systems and simply returns.

Description This routine allows you to start multiple MATLAB processes for
the purpose of using MATLAB software as a computational engine.
engOpenSingleUse starts a MATLAB process, establishes a connection,
and returns a unique engine identifier, or NULL if the open fails.
engOpenSingleUse starts a new MATLAB process each time it is called.

engOpenSingleUse opens a COM channel to MATLAB. This starts the
MATLAB software that was registered during installation. If you did
not register during installation, on the command line you can enter
the command:

matlab /regserver

5. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-12

engOpenSingleUse (C)

engOpenSingleUse allows single-use instances of a engine server.
engOpenSingleUse differs from engOpen, which allows multiple users
to use the same engine server.

See “Introducing MATLAB COM Integration” for additional details.

2-13

engOutputBuffer (C and Fortran)

Purpose Specify buffer for MATLAB output

C Syntax #include "engine.h"
int engOutputBuffer(Engine *ep, char *p, int n);

Fortran
Syntax

integer*4 engOutputBuffer(ep, p)
mwPointer ep
character*n p

Arguments ep
Engine pointer

p
Pointer to character buffer

n
Length of buffer p

Returns 1 if you pass it a NULL engine pointer. Otherwise, it returns 0.

Description engOutputBuffer defines a character buffer for engEvalString to
return any output that ordinarily appears on the screen.

The default behavior of engEvalString is to discard any standard output
caused by the command it is executing. A call to engOutputBuffer with
a buffer of nonzero length tells any subsequent calls to engEvalString
to save output in the character buffer pointed to by p.

To turn off output buffering in C, use:

engOutputBuffer(ep, NULL, 0);

To turn off output buffering in Fortran, use:

engOutputBuffer(ep, '')

2-14

engOutputBuffer (C and Fortran)

Note The buffer returned by engEvalString is not guaranteed to be
NULL terminated.

2-15

engOutputBuffer (C and Fortran)

C
Examples

UNIX6 Operating Systems

See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a C program.

Microsoft Windows Operating Systems

See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB
engine functions from a C program for Windows systems.

Fortran
Examples

See fengdemo.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a Fortran program.

See Also engOpen, engEvalString

6. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-16

engPutVariable (C and Fortran)

Purpose Put variables into MATLAB engine workspace

C Syntax #include "engine.h"
int engPutVariable(Engine *ep, const char *name, const mxArray

*pm);

Fortran
Syntax integer*4 engPutVariable(ep, name, pm)

mwPointer ep, pm
character*(*) name

Arguments ep
Engine pointer

name
Name given to the mxArray in the engine’s workspace

pm
mxArray pointer

Returns 0 if successful and 1 if an error occurs.

Description engPutVariable writes mxArray pm to the engine ep, giving it the
variable name name. If the mxArray does not exist in the workspace, it
is created. If an mxArray with the same name already exists in the
workspace, the existing mxArray is replaced with the new mxArray.

2-17

engPutVariable (C and Fortran)

C
Examples

UNIX7 Operating Systems

See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a C program.

Microsoft Windows Operating Systems

See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB
engine functions from a C program for Windows systems.

See Also

engGetVariable

7. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-18

engSetVisible (C)

Purpose Show or hide MATLAB engine session

C Syntax #include "engine.h"
int engSetVisible(Engine *ep, bool value);

Arguments ep
Engine pointer

value
Value to set the Visible property to. Set value to 1 to make the
engine window visible, or to 0 to make it invisible.

Returns Microsoft Windows Operating Systems Only

0 on success, and 1 otherwise.

Description engSetVisible makes the window for the MATLAB engine session,
ep, either visible or invisible on the Windows desktop. You can use
this function to enable or disable user interaction with the MATLAB
engine session.

Examples The following code opens engine session ep and disables its visibility.

Engine *ep;
bool vis;

ep = engOpen(NULL);
engSetVisible(ep, 0);

To determine the current visibility setting, use:

engGetVisible(ep, &vis);

See Also engGetVisible

2-19

matClose (C and Fortran)

Purpose Close MAT-file

C Syntax #include "mat.h"
int matClose(MATFile *mfp);

Fortran
Syntax

integer*4 matClose(mfp)
mwPointer mfp

Arguments mfp
Pointer to MAT-file information

Returns EOF in C (-1 in Fortran) for a write error, and 0 if successful.

Description matClose closes the MAT-file associated with mfp.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

Fortran
Examples

See matdemo1.F and matdemo2.F in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use this
MAT-file routine in a Fortran program.

2-20

matDeleteVariable (C and Fortran)

Purpose Delete named mxArray from MAT-file

C Syntax #include "mat.h"
int matDeleteVariable(MATFile *mfp, const char *name);

Fortran
Syntax

integer*4 matDeleteVariable(mfp, name)
mwPointer mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Name of mxArray to delete

Returns 0 if successful, and nonzero otherwise.

Description matDeleteVariable deletes the named mxArray from the MAT-file
pointed to by mfp.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

2-21

MATFile (C and Fortran)

Purpose Type for a MAT-file

Description A handle to a MAT-file object. A MAT-file is the data file format
MATLAB software uses for saving data to your disk.

MATFile is a C language opaque type.

The MAT-file interface library contains routines for reading and writing
MAT-files. These routines are listed in “MAT-File Access” on page 1-2.
You call these routines from your own C and Fortran programs, using
MATFile to access your data file.

The header file containing this type is:

#include "mat.h"

Examples The example matcreat.c in your
matlabroot/extern/examples/eng_mat directory shows how to
create and use a MAT-file.

The matOpen function creates the file mattest.mat.

The mxCreateDoubleMatrix and mxCreateString functions create
mxArrays pa1, pa2, and pa3. mxCreateString also initializes pa3 using
the literal string "MATLAB: the language of technical computing".
The C function memcpy copies data (initialized in matcreat.c) into pa2.

The matPutVariable and matPutVariableAsGlobal functions write
the data to mattest.mat.

Calls to the matClose and mxDestroyArray functions complete the
procedure.

Other examples, also found in your
matlabroot\extern\examples\eng_mat directory, that show you
how to use MATFile are:

• matdgns.c shows how to use MAT-file routines in a C program.

• matdemo1.F and matdemo2.F show how to use MAT-file routines in
a Fortran program.

2-22

MATFile (C and Fortran)

See Also matOpen, matClose, matPutVariable, matGetVariable,
mxDestroyArray

2-23

matGetDir (C and Fortran)

Purpose Get directory of mxArrays in MAT-file

C Syntax #include "mat.h"
char **matGetDir(MATFile *mfp, int *num);

Fortran
Syntax

mwPointer matGetDir(mfp, num)
mwPointer mfp
integer*4 num

Arguments mfp
Pointer to MAT-file information

num
Address of the variable to contain the number of mxArrays in the
MAT-file

Returns A pointer to an internal array containing pointers to the names of
the mxArrays in the MAT-file pointed to by mfp. In C, each name is
a NULL-terminated string. The length of the internal array (number
of mxArrays in the MAT-file) is placed into num. If num is zero, mfp
contains no arrays.

matGetDir returns NULL in C (0 in Fortran) and sets num to a negative
number if it fails.

Description This routine allows you to get a list of the names of the mxArrays
contained within a MAT-file.

The internal array of strings that matGetDir returns is allocated
using a single mxCalloc and must be freed using mxFree when you
are finished with it.

MATLAB variable names can be up to length mxMAXNAM, where
mxMAXNAM is defined in the C header file matrix.h.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

2-24

matGetDir (C and Fortran)

Fortran
Examples

See matdemo2.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this MAT-file routine
in a Fortran program.

2-25

matGetFp (C)

Purpose Get file pointer to MAT-file

C Syntax #include "mat.h"
FILE *matGetFp(MATFile *mfp);

Arguments mfp
Pointer to MAT-file information

Returns A C file handle to the MAT-file with handle mfp. Returns NULL if mfp is
a handle to a MAT-file in HDF5-based format.

Description Use matGetFp to obtain a C file handle to a MAT-file. This can be
useful for using standard C library routines like ferror and feof to
investigate error situations.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

2-26

matGetNextVariable (C and Fortran)

Purpose Read next mxArray from MAT-file

C Syntax #include "mat.h"
mxArray *matGetNextVariable(MATFile *mfp, const char **name);

Fortran
Syntax

mwPointer matGetNextVariable(mfp, name)
mwPointer mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Address of the variable to contain the mxArray name

Returns A pointer to a newly allocated mxArray structure representing the next
mxArray from the MAT-file pointed to by mfp. The function returns
the name of the mxArray in name.

matGetNextVariable returns NULL in C (0 in Fortran) when the
end-of-file is reached or if there is an error condition. In C, use feof and
ferror from the Standard C Library to determine status.

Description matGetNextVariable allows you to step sequentially through a
MAT-file and read all the mxArrays in a single pass. The function reads
and returns the next mxArray from the MAT-file pointed to by mfp.

Use matGetNextVariable immediately after opening the MAT-file
with matOpen and not in conjunction with other MAT-file routines.
Otherwise, the concept of the next mxArray is undefined.

Use mxDestroyArray to destroy the mxArray created by this routine
when you are finished with it.

The order of variables returned from successive calls to
matGetNextVariable is not guaranteed to be the same order in which
the variables were written.

2-27

matGetNextVariable (C and Fortran)

C
Examples

See matdgns.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use the MATLAB MAT-file
routines in a C program.

See Also matGetNextVariableInfo, matGetVariable, mxDestroyArray

2-28

matGetNextVariableInfo (C and Fortran)

Purpose Load array header information only

C Syntax #include "mat.h"
mxArray *matGetNextVariableInfo(MATFile *mfp, const char **name);

Fortran
Syntax

mwPointer matGetNextVariableInfo(mfp, name)
mwPointer mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Address of the variable to contain the mxArray name

Returns A pointer to a newly allocated mxArray structure representing header
information for the next mxArray from the MAT-file pointed to by mfp.
The function returns the name of the mxArray in name.

matGetNextVariableInfo returns NULL in C (0 in Fortran) when the
end-of-file is reached or if there is an error condition. In C, use feof and
ferror from the Standard C Library to determine status.

Description matGetNextVariableInfo loads only the array header information,
including everything except pr, pi, ir, and jc, from the file’s current
file offset.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetNextVariableInfo sets them to -1 instead.
These headers are for informational use only and should never be
passed back to the MATLAB workspace or saved to MAT-files.

Use mxDestroyArray to destroy the mxArray created by this routine
when you are finished with it.

The order of variables returned from successive calls to
matGetNextVariableInfo is not guaranteed to be the same order in
which the variables were written.

2-29

matGetNextVariableInfo (C and Fortran)

C
Examples

See matdgns.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use the MATLAB MAT-file
routines in a C program.

See Also matGetNextVariable, matGetVariableInfo

2-30

matGetVariable (C and Fortran)

Purpose Read mxArray from MAT-files

C Syntax #include "mat.h"
mxArray *matGetVariable(MATFile *mfp, const char *name);

Fortran
Syntax

mwPointer matGetVariable(mfp, name)
mwPointer mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Name of mxArray to get from MAT-file

Returns A pointer to a newly allocated mxArray structure representing the
mxArray named by name from the MAT-file pointed to by mfp.

matGetVariable returns NULL in C (0 in Fortran) if the attempt to
return the mxArray named by name fails.

Description This routine allows you to copy an mxArray out of a MAT-file.

Use mxDestroyArray to destroy the mxArray created by this routine
when you are finished with it.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

See Also matPutVariable, mxDestroyArray

2-31

matGetVariableInfo (C and Fortran)

Purpose Load array header information only

C Syntax #include "mat.h"
mxArray *matGetVariableInfo(MATFile *mfp, const char *name);

Fortran
Syntax

mwPointer matGetVariableInfo(mfp, name);
mwPointer mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Name of mxArray to get from MAT-file

Returns A pointer to a newly allocated mxArray structure representing header
information for the mxArray named by name from the MAT-file pointed
to by mfp.

matGetVariableInfo returns NULL in C (0 in Fortran) if the attempt to
return header information for the mxArray named by name fails.

Description matGetVariableInfo loads only the array header information,
including everything except pr, pi, ir, and jc. It recursively creates the
cells and structures through their leaf elements, but does not include
pr, pi, ir, and jc.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetVariableInfo sets them to -1 instead. These
headers are for informational use only and should never be passed back
to the MATLAB workspace or saved to MAT-files.

Use mxDestroyArray to destroy the mxArray created by this routine
when you are finished with it.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

2-32

matGetVariableInfo (C and Fortran)

See Also matGetVariable

2-33

matOpen (C and Fortran)

Purpose Open MAT-file

C Syntax #include "mat.h"
MATFile *matOpen(const char *filename, const char *mode);

Fortran
Syntax

mwPointer matOpen(filename, mode)
character*(*) filename, mode

Arguments filename
Name of file to open

mode
File opening mode. Valid values for mode are listed in the
following table.

r Opens file for reading only; determines the current
version of the MAT-file by inspecting the files and
preserves the current version.

u Opens file for update, both reading and writing,
but does not create the file if the file does not exist
(equivalent to the r+ mode of fopen); determines the
current version of the MAT-file by inspecting the files
and preserves the current version.

w Opens file for writing only; deletes previous contents,
if any.

w4 Creates a Level 4 MAT-file, compatible with MATLAB
Versions 4 software and earlier.

wL Opens file for writing character data using the default
character set for your system. The resulting MAT-file
can be read with MATLAB Version 6 or 6.5 software.

If you do not use the wL mode switch, MATLAB
writes character data to the MAT-file using Unicode®
character encoding by default.

2-34

matOpen (C and Fortran)

wz Opens file for writing compressed data.
w7.3 Creates a MAT-file in an HDF5-based format that can

store objects occupy more than 2 GB.

Returns A file handle, or NULL in C (0 in Fortran) if the open fails.

Description This routine opens a MAT-file for reading and writing.

See “Writing Character Data” in the External Interfaces documentation
for more information on how MATLAB uses character encodings.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

Fortran
Examples

See matdemo1.F and matdemo2.F in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a Fortran program.

2-35

matPutVariable (C and Fortran)

Purpose Write mxArrays to MAT-files

C Syntax #include "mat.h"
int matPutVariable(MATFile *mfp, const char *name, const mxArray

*pm);

Fortran
Syntax

integer*4 matPutVariable(mfp, name, pm)
mwPointer mfp, pm
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Name of mxArray to put into MAT-file

pm
mxArray pointer

Returns 0 if successful and nonzero if an error occurs. In C, use feof and ferror
from the Standard C Library along with matGetFp to determine status.

Description This routine allows you to put an mxArray into a MAT-file.

matPutVariable writes mxArray pm to the MAT-file mfp. If the mxArray
does not exist in the MAT-file, it is appended to the end. If an mxArray
with the same name already exists in the file, the existing mxArray is
replaced with the new mxArray by rewriting the file. The size of the new
mxArray can be different from the existing mxArray.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

See Also matGetVariable

2-36

matPutVariableAsGlobal (C and Fortran)

Purpose Put mxArrays into MAT-files as originating from global workspace

C Syntax #include "mat.h"
int matPutVariableAsGlobal(MATFile *mfp, const char *name, const

mxArray *pm);

Fortran
Syntax

integer*4 matPutVariableAsGlobal(mfp, name, pm)
mwPointer mfp, pm
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Name of mxArray to put into MAT-file

pm
mxArray pointer

Returns 0 if successful and nonzero if an error occurs. In C, use feof and ferror
from the Standard C Library with matGetFp to determine status.

Description This routine puts an mxArray into aMAT-file. matPutVariableAsGlobal
is similar to matPutVariable, except that the array, when loaded by
MATLAB software, is placed into the global workspace and a reference
to it is set in the local workspace. If you write to a MATLAB 4 format
file, matPutVariableAsGlobal does not load it as global and has the
same effect as matPutVariable.

matPutVariableAsGlobal writes mxArray pm to the MAT-file mfp. If
the mxArray does not exist in the MAT-file, it is appended to the end. If
an mxArray with the same name already exists in the file, the existing
mxArray is replaced with the new mxArray by rewriting the file. The
size of the new mxArray can be different from the existing mxArray.

2-37

matPutVariableAsGlobal (C and Fortran)

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

2-38

mexAtExit (C and Fortran)

Purpose Register function to call when MEX-function is cleared or MATLAB
software terminates

C Syntax #include "mex.h"
int mexAtExit(void (*ExitFcn)(void));

Fortran
Syntax

integer*4 mexAtExit(ExitFcn)
subroutine ExitFcn()

Arguments ExitFcn
Pointer to function you want to run on exit

Returns Always returns 0.

Description Use mexAtExit to register a function to be called just before the
MEX-function is cleared or MATLAB software is terminated. mexAtExit
gives your MEX-function a chance to perform tasks such as freeing
persistent memory and closing files. Typically, the named ExitFcn
performs tasks like closing streams or sockets.

Each MEX-function can register only one active exit function at a time.
If you call mexAtExit more than once, MATLAB uses the ExitFcn from
the more recent mexAtExit call as the exit function.

If a MEX-function is locked, all attempts to clear the MEX-file will fail.
Consequently, if a user attempts to clear a locked MEX-file, MATLAB
does not call the ExitFcn.

In Fortran, you must declare the ExitFcn as external in the Fortran
routine that calls mexAtExit if it is not within the scope of the file.

C
Examples

See mexatexit.c in the mex subdirectory of the examples directory.

See Also mexLock, mexUnlock, mexSetTrapFlag

2-39

mexCallMATLAB (C and Fortran)

Purpose Call MATLAB function or user-defined M-file or MEX-file

C Syntax #include "mex.h"
int mexCallMATLAB(int nlhs, mxArray *plhs[], int nrhs,

mxArray *prhs[], const char *functionName);

Fortran
Syntax

integer*4 mexCallMATLAB(nlhs, plhs, nrhs, prhs, functionName)
integer*4 nlhs, nrhs
mwPointer plhs(*), prhs(*)
character*(*) functionName

Arguments nlhs
Number of desired output arguments.

plhs
Array of pointers to output arguments.

nrhs
Number of input arguments.

prhs
Array of pointers to input arguments.

functionName
Character string containing the functionName of the MATLAB
built-in, operator, M-file, or MEX-file that you are calling.

Returns 0 if successful, and a nonzero value if unsuccessful.

Description Call mexCallMATLAB to invoke internal MATLAB numeric functions,
MATLAB operators, M-files, or other MEX-files. Both mexCallMATLAB
and mexEvalString execute MATLAB commands. However,
mexCallMATLAB provides a mechanism for returning results (left-hand
side arguments) back to the MEX-file; mexEvalString provides no way
for return values to be passed back to the MEX-file.

For a complete description of the input and output arguments passed
to functionName, see mexFunction. When calling the mexCallMATLAB

2-40

mexCallMATLAB (C and Fortran)

function, the number of output arguments nlhs and input arguments
nrhs must be less than or equal to 50.

MATLAB allocates dynamic memory to store the mxArrays in plhs.
MATLAB automatically deallocates the dynamic memory when you
clear the MEX-file. However, if heap space is at a premium, you may
want to call mxDestroyArray when you are finished with the mxArrays
plhs points to.

If functionName is an operator, place the operator inside a pair of single
quotes, for example, '+'.

It is possible to generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB. For example, if you create an M-file that returns two
variables but assigns only one of them a value:

function [a,b]=foo(c)
a=2*c;

you get this warning message in MATLAB:

Warning: One or more output arguments not assigned
during call to 'foo'.

MATLAB assigns output b to an empty matrix. If you then call foo
using mexCallMATLAB, the unassigned output variable is given type
mxUNKNOWN_CLASS.

Error
Handling

If functionName detects an error, MATLAB terminates the MEX-file
and returns control to the MATLAB prompt. If you want to trap errors,
use the mexCallMATLABWithTrap function.

C
Examples

See mexcallmatlab.c in the mex subdirectory of the examples directory.

Additional examples:

• sincall.c in the refbook subdirectory of the examples directory

2-41

mexCallMATLAB (C and Fortran)

• mexevalstring.c and mexsettrapflag.c in the mex subdirectory
of the examples directory

• mxcreatecellmatrix.c and mxisclass.c in the mx subdirectory
of the examples directory

See Also mexFunction, mexCallMATLABWithTrap, mexEvalString,
mxDestroyArray

2-42

mexCallMATLABWithTrap (C and Fortran)

Purpose Call MATLAB function, user-defined M-file, or MEX-file and capture
error information

C Syntax #include "mex.h"
mxArray *mexCallMATLABWithTrap(int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[], const char *functionName);

Fortran
Syntax

mwPointer mexCallMATLABWithTrap(nlhs, plhs, nrhs, prhs, functionName)
integer*4 nlhs, nrhs
mwPointer plhs(*), prhs(*)
character*(*) functionName

Arguments For more information about arguments, see mexCallMATLAB.

nlhs
Number of desired output arguments.

plhs
Array of pointers to output arguments.

nrhs
Number of input arguments.

prhs
Array of pointers to input arguments.

functionName
Character string containing the functionName of the MATLAB
built-in, operator, M-file, or MEX-file that you are calling.

Returns NULL if no error occurred; otherwise, a pointer to an mxArray of class
MException.

Description The mexCallMATLABWithTrap function performs the same function as
mexCallMATLAB. However, if MATLAB detects an error when executing
functionName, MATLAB returns control to the line in the MEX-file
immediately following the call to mexCallMATLABWithTrap. For
information about MException, see “Responding to an Exception”

2-43

mexCallMATLABWithTrap (C and Fortran)

See Also mexCallMATLAB, MException

2-44

mexErrMsgIdAndTxt (C and Fortran)

Purpose Issue error message with identifier and return to MATLAB prompt

C Syntax #include "mex.h"
void mexErrMsgIdAndTxt(const char *errorid,
const char *errormsg, ...);

Fortran
Syntax

mexErrMsgIdAndTxt(errorid, errormsg)
character*(*) errorid, errormsg

Arguments errorid
String containing a MATLAB message identifier. For information
on creating identifiers, see “Message Identifiers” in the MATLAB
Programming Fundamentals documentation.

errormsg
String containing the error message to be displayed. In C, the
string may include formatting conversion characters, such as
those used with the ANSI C sprintf function.

...
In C, any additional arguments needed to translate formatting
conversion characters used in errormsg. Each conversion
character in errormsg is converted to one of these values.

Description Call mexErrMsgIdAndTxt to write an error message and its
corresponding identifier to the MATLAB window. After the error
message prints, MATLAB terminates the MEX-file and returns control
to the MATLAB prompt.

Calling mexErrMsgIdAndTxt does not clear the MEX-file from memory.
Consequently, mexErrMsgIdAndTxt does not invoke the function
registered through mexAtExit.

If your application called mxCalloc or one of the mxCreate* routines to
allocate memory, mexErrMsgIdAndTxt automatically frees the allocated
memory.

2-45

mexErrMsgIdAndTxt (C and Fortran)

Note If you get warnings when using mexErrMsgIdAndTxt, you
may have a memory management compatibility problem. For more
information, see “Memory Management Issues” in the External
Interfaces documentation.

Remarks In addition to the errorid and errormsg, the mexerrmsgtxt function
determines where the error occurred, and displays the following
information. For example, in the function foo, mexerrmsgtxt displays:

??? Error using ==> foo

See Also mexErrMsgTxt, mexWarnMsgIdAndTxt, mexWarnMsgTxt

2-46

mexErrMsgTxt (C and Fortran)

Purpose Issue error message and return to MATLAB prompt

C Syntax #include "mex.h"
void mexErrMsgTxt(const char *errormsg);

Fortran
Syntax

mexErrMsgTxt(errormsg)
character*(*) errormsg

Arguments errormsg
String containing the error message to be displayed

Description Call mexErrMsgTxt to write an error message to the MATLAB window.
After the error message prints, MATLAB terminates the MEX-file and
returns control to the MATLAB prompt.

Calling mexErrMsgTxt does not clear the MEX-file from memory.
Consequently, mexErrMsgTxt does not invoke the function registered
through mexAtExit.

If your application called mxCalloc or one of the mxCreate* routines
to allocate memory, mexErrMsgTxt automatically frees the allocated
memory.

Note If you get warnings when using mexErrMsgTxt, you may have a
memory management compatibility problem. For more information,
see “Memory Management Issues”.

Remarks In addition to the errormsg, the mexerrmsgtxt function determines
where the error occurred, and displays the following information. If
an error labeled Print my error message occurs in the function foo,
mexerrmsgtxt displays:

??? Error using ==> foo
Print my error message

2-47

mexErrMsgTxt (C and Fortran)

C
Examples

See xtimesy.c in the refbook subdirectory of the examples directory.

For additional examples, see convec.c, findnz.c, fulltosparse.c,
phonebook.c, revord.c, and timestwo.c in the refbook subdirectory
of the examples directory.

See Also mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt, mexWarnMsgTxt

2-48

mexEvalString (C and Fortran)

Purpose Execute MATLAB command in caller’s workspace

C Syntax #include "mex.h"
int mexEvalString(const char *command);

Fortran
Syntax

integer*4 mexEvalString(command)
character*(*) command

Arguments command
A string containing the MATLAB command to execute

Returns 0 if successful, and a nonzero value if unsuccessful.

Description Call mexEvalString to invoke a MATLAB command in the workspace
of the caller.

mexEvalString and mexCallMATLAB both execute MATLAB commands.
However, mexCallMATLAB provides a mechanism for returning results
(left-hand side arguments) back to the MEX-file; mexEvalString
provides no way for return values to be passed back to the MEX-file.

All arguments that appear to the right of an equal sign in the command
string must already be current variables of the caller’s workspace.

Error
Handling

If command detects an error, MATLAB terminates the MEX-file and
returns control to the MATLAB prompt. If you want to trap errors, use
the mexEvalStringWithTrap function.

Examples See mexevalstring.c in the mex subdirectory of the examples directory.

See Also mexCallMATLAB, mexEvalStringWithTrap

2-49

mexEvalStringWithTrap (C and Fortran)

Purpose Execute MATLAB command in caller’s workspace and capture error
information

C Syntax #include "mex.h"
mxArray *mexEvalStringWithTrap(const char *command);

Fortran
Syntax

mwPointer mexEvalStringWithTrap(command)
character*(*) command

Arguments command
A string containing the MATLAB command to execute

Returns an object ME of class MException

Description The mexEvalStringWithTrap function performs the same function
as mexEvalString. However, if MATLAB detects an error when
executing command, MATLAB returns control to the line in the MEX-file
immediately following the call to mexEvalStringWithTrap.

See Also mexEvalString, MException, mexCallMATLAB

2-50

mexFunction (C and Fortran)

Purpose Entry point to C MEX-file

C Syntax #include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[]);

Fortran
Syntax

mexFunction(nlhs, plhs, nrhs, prhs)
integer*4 nlhs, nrhs
mwPointer plhs(*), prhs(*)

Arguments nlhs
The number of expected output mxArrays

plhs
Array of pointers to the expected output mxArrays

nrhs
The number of input mxArrays

prhs
Array of pointers to the input mxArrays. These mxArrays are read
only and should not be modified by your MEX-file. Changing the
data in these mxArrays may produce undesired side effects.

Description mexFunction is not a routine you call. Rather, mexFunction is the
name of a function in C (subroutine in Fortran) that you must write
in every MEX-file. When you invoke a MEX-function, MATLAB
software finds and loads the corresponding MEX-file of the same name.
MATLAB then searches for a symbol named mexFunction within the
MEX-file. If it finds one, it calls the MEX-function using the address
of the mexFunction symbol. If MATLAB cannot find a routine named
mexFunction inside the MEX-file, it issues an error message.

When you invoke a MEX-file, MATLAB automatically seeds nlhs, plhs,
nrhs, and prhs with the caller’s information. In the syntax of the
MATLAB language, functions have the general form:

[a,b,c,...] = fun(d,e,f,...)

2-51

mexFunction (C and Fortran)

where the ... denotes more items of the same format. The a,b,c...
are left-hand side arguments, and the d,e,f... are right-hand side
arguments. The arguments nlhs and nrhs contain the number of
left-hand side and right-hand side arguments, respectively, with which
the MEX-function is called. prhs is an array of mxArray pointers whose
length is nrhs. plhs is an array whose length is nlhs, where your
function must set pointers for the returned left-hand side mxArrays.

C
Examples

See mexfunction.c in the mex subdirectory of the examples directory.

2-52

mexFunctionName (C and Fortran)

Purpose Name of current MEX-function

C Syntax #include "mex.h"
const char *mexFunctionName(void);

Fortran
Syntax

character*(*) mexFunctionName()

Returns The name of the current MEX-function.

Description mexFunctionName returns the name of the current MEX-function.

C
Examples

See mexgetarray.c in the mex subdirectory of the examples directory.

2-53

mexGet (C)

Purpose Get value of specified Handle Graphics property

C Syntax #include "mex.h"
const mxArray *mexGet(double handle, const char *property);

Arguments handle
Handle to a particular graphics object

property
A Handle Graphics property

Returns The value of the specified property in the specified graphics object on
success. Returns NULL on failure. The return argument from mexGet is
declared as constant, meaning that it is read only and should not be
modified. Changing the data in these mxArrays may produce undesired
side effects.

Description Call mexGet to get the value of the property of a certain graphics object.
mexGet is the API equivalent of the MATLAB get function. To set a
graphics property value, call mexSet.

Examples See mexget.c in the mex subdirectory of the examples directory.

See Also mexSet

2-54

mexGetVariable (C and Fortran)

Purpose Get copy of variable from specified workspace

C Syntax #include "mex.h"
mxArray *mexGetVariable(const char *workspace, const char

*varname);

Fortran
Syntax

mwPointer mexGetVariable(workspace, varname)
character*(*) workspace, varname

Arguments workspace
Specifies where mexGetVariable should search in order to find
array varname. The possible values are

base Search for the variable in the base workspace.
caller Search for the variable in the caller’s workspace.
global Search for the variable in the global workspace.

varname
Name of the variable to copy

Returns A copy of the variable on success. Returns NULL in C (0 on Fortran) on
failure. A common cause of failure is specifying a variable that is not
currently in the workspace. Perhaps the variable was in the workspace
at one time but has since been cleared.

Description Call mexGetVariable to get a copy of the specified variable. The
returned mxArray contains a copy of all the data and characteristics
that the variable had in the other workspace. Modifications to the
returned mxArray do not affect the variable in the workspace unless you
write the copy back to the workspace with mexPutVariable.

Use mxDestroyArray to destroy the mxArray created by this routine
when you are finished with it.

2-55

mexGetVariable (C and Fortran)

C
Examples

See mexgetarray.c in the mex subdirectory of the examples directory.

See Also mexGetVariablePtr, mexPutVariable, mxDestroyArray

2-56

mexGetVariablePtr (C and Fortran)

Purpose Get read-only pointer to variable from another workspace

C Syntax #include "mex.h"
const mxArray *mexGetVariablePtr(const char *workspace,

const char *varname);

Fortran
Syntax

mwPointer mexGetVariablePtr(workspace, varname)
character*(*) workspace, varname

Arguments workspace
Specifies which workspace you want mexGetVariablePtr to
search. The possible values are

base Search for the variable in the base workspace.
caller Search for the variable in the caller’s workspace.
global Search for the variable in the global workspace.

varname
Name of a variable in another workspace. This is a variable name,
not an mxArray pointer.

Returns A read-only pointer to the mxArray on success. Returns NULL in C (0 in
Fortran) on failure.

Description Call mexGetVariablePtr to get a read-only pointer to the specified
variable, varname, into your MEX-file’s workspace. This command is
useful for examining an mxArray’s data and characteristics. If you need
to change data or characteristics, use mexGetVariable (along with
mexPutVariable) instead of mexGetVariablePtr.

If you simply need to examine data or characteristics,
mexGetVariablePtr offers superior performance because the caller
needs to pass only a pointer to the array.

2-57

mexGetVariablePtr (C and Fortran)

C
Examples

See mxislogical.c in the mx subdirectory of the examples directory.

See Also mexGetVariable

2-58

mexIsGlobal (C and Fortran)

Purpose Determine whether mxArray has global scope

C Syntax #include "matrix.h"
bool mexIsGlobal(const mxArray *pm);

Fortran
Syntax

integer*4 mexIsGlobal(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray has global scope, and logical 0 (false)
otherwise.

Description Use mexIsGlobal to determine whether the specified mxArray has
global scope.

C
Examples

See mxislogical.c in the mx subdirectory of the examples directory.

See Also mexGetVariable, mexGetVariablePtr, mexPutVariable, global

2-59

mexIsLocked (C and Fortran)

Purpose Determine whether MEX-file is locked

C Syntax #include "mex.h"
bool mexIsLocked(void);

Fortran
Syntax

integer*4 mexIsLocked()

Returns Logical 1 (true) if the MEX-file is locked; logical 0 (false) if the file
is unlocked.

Description Call mexIsLocked to determine whether the MEX-file is locked. By
default, MEX-files are unlocked, meaning that users can clear the
MEX-file at any time.

To unlock a MEX-file, call mexUnlock.

C
Examples

See mexlock.c in the mex subdirectory of the examples directory.

See Also mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mexUnlock

2-60

mexLock (C and Fortran)

Purpose Prevent MEX-file from being cleared from memory

C Syntax #include "mex.h"
void mexLock(void);

Fortran
Syntax

mexLock()

Description By default, MEX-files are unlocked, meaning that a user can clear them
at any time. Call mexLock to prohibit a MEX-file from being cleared.

To unlock a MEX-file, you must call mexUnlock. Do not use the munlock
function.

mexLock increments a lock count. If you call mexLock n times, you must
call mexUnlock n times to unlock your MEX-file.

C
Examples

See mexlock.c in the mex subdirectory of the examples directory.

See Also mexIsLocked, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mexUnlock

2-61

mexMakeArrayPersistent (C and Fortran)

Purpose Make mxArray persist after MEX-file completes

C Syntax #include "mex.h"
void mexMakeArrayPersistent(mxArray *pm);

Fortran
Syntax

mexMakeArrayPersistent(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray created by an mxCreate* function

Description By default, an mxArrayallocated by an mxCreate* function is not
persistent. The MATLAB memory management facility automatically
frees a nonpersistent mxArray when the MEX-function finishes. If
you want the mxArray to persist through multiple invocations of the
MEX-function, you must call the mexMakeArrayPersistent function.

Note If you create a persistent mxArray, you are responsible for
destroying it using mxDestroyArray when the MEX-file is cleared. If
you do not destroy a persistent mxArray, MATLAB leaks memory. See
mexAtExit to see how to register a function that gets called when the
MEX-file is cleared. See mexLock to see how to lock your MEX-file so
that it is never cleared.

See Also mexAtExit, mxDestroyArray, mexLock, mexMakeMemoryPersistent,
and the mxCreate* functions

2-62

mexMakeMemoryPersistent (C and Fortran)

Purpose Make memory allocated by MATLAB software persist after
MEX-function completes

C Syntax #include "mex.h"
void mexMakeMemoryPersistent(void *ptr);

Fortran
Syntax

mexMakeMemoryPersistent(ptr)
mwPointer ptr

Arguments ptr
Pointer to the beginning of memory allocated by one of the
MATLAB memory allocation routines

Description By default, memory allocated by MATLAB software is nonpersistent, so
it is freed automatically when the MEX-function finishes. If you want
the memory to persist, you must call mexMakeMemoryPersistent.

Note If you create persistent memory, you are responsible for freeing
it when the MEX-function is cleared. If you do not free the memory,
MATLAB leaks memory. To free memory, use mxFree. See mexAtExit
to see how to register a function that gets called when the MEX-function
is cleared. See mexLock to see how to lock your MEX-function so that
it is never cleared.

See Also mexAtExit, mexLock, mexMakeArrayPersistent, mxCalloc, mxFree,
mxMalloc, mxRealloc

2-63

mexPrintf (C and Fortran)

Purpose ANSI C printf-style output routine

C Syntax #include "mex.h"
int mexPrintf(const char *message, ...);

Fortran
Syntax

integer*4 mexPrintf(message)
character*(*) message

Arguments message
String to be displayed. In C, the string may include formatting
conversion characters, such as those used with the ANSI C
printf function.

...
In C, any additional arguments needed to translate formatting
conversion characters used in message. Each conversion character
in message is converted to one of these values.

Returns The number of characters printed. This includes characters specified
with backslash codes, such as \n and \b.

Description This routine prints a string on the screen and in the diary (if the diary
is in use). It provides a callback to the standard C printf routine
already linked inside MATLAB software, and avoids linking the entire
stdio library into your MEX-file.

In a C MEX-file, you must call mexPrintf instead of printf to display a
string.

Note If you want the literal % in your message, you must use %% in your
message string since % has special meaning to mexPrintf. Failing to do
so causes unpredictable results.

2-64

mexPrintf (C and Fortran)

C
Examples

See

• mexfunction.c in the mex subdirectory of the examples directory

• phonebook.c in the refbook subdirectory of the examples directory.

See Also mexErrMsgIdAndTxt, mexErrMsgTxt, mexWarnMsgIdAndTxt,
mexWarnMsgTxt

2-65

mexPutVariable (C and Fortran)

Purpose Copy mxArray from MEX-function into specified workspace

C Syntax #include "mex.h"
int mexPutVariable(const char *workspace, const char *varname,

const mxArray *pm);

Fortran
Syntax

integer*4 mexPutVariable(workspace, varname, pm)
character*(*) workspace, varname
mwPointer pm

Arguments workspace
Specifies the scope of the array that you are copying. The possible
values are

base Copy mxArray to the base workspace.
caller Copy mxArray to the caller’s workspace.
global Copy mxArray to the list of global variables.

varname
Name given to the mxArray in the workspace

pm
Pointer to the mxArray

Returns 0 on success; 1 on failure. A possible cause of failure is that pm is NULL
in C (0 in Fortran).

Description Call mexPutVariable to copy the mxArray, at pointer pm, from your
MEX-function into the specified workspace. MATLAB software gives
the name, varname, to the copied mxArray in the receiving workspace.

mexPutVariable makes the array accessible to other entities, such as
MATLAB, M-files, or other MEX-functions.

If a variable of the same name already exists in the specified workspace,
mexPutVariable overwrites the previous contents of the variable with

2-66

mexPutVariable (C and Fortran)

the contents of the new mxArray. For example, suppose the MATLAB
workspace defines variable Peaches as:

Peaches
1 2 3 4

and you call mexPutVariable to copy Peaches into the same workspace:

mexPutVariable("base", "Peaches", pm)

Then the old value of Peaches disappears and is replaced by the value
passed in by mexPutVariable.

C
Examples

See mexgetarray.c in the mex subdirectory of the examples directory.

See Also mexGetVariable

2-67

mexSet (C)

Purpose Set value of specified Handle Graphics property

C Syntax #include "mex.h"
int mexSet(double handle, const char *property,

mxArray *value);

Arguments handle
Handle to a particular graphics object

property
String naming a Handle Graphics property

value
Pointer to an mxArray holding the new value to assign to the
property

Returns 0 on success; 1 on failure. Possible causes of failure include:

• Specifying a nonexistent property.

• Specifying an illegal value for that property, for example, specifying
a string value for a numerical property.

Description Call mexSet to set the value of the property of a certain graphics object.
mexSet is the API equivalent of the MATLAB set function. To get the
value of a graphics property, call mexGet.

Examples See mexget.c in the mex subdirectory of the examples directory.

See Also mexGet

2-68

mexSetTrapFlag (C and Fortran)

Purpose Control response of mexCallMATLAB to errors

C Syntax #include "mex.h"
void mexSetTrapFlag(int trapflag);

Note The mexsettrapflag function will be removed in a future version
of MATLAB software.

Fortran
Syntax

mexSetTrapFlag(trapflag)
integer*4 trapflag

Arguments trapflag
Control flag. Possible values are:

0 On error, control returns to the MATLAB prompt.
1 On error, control returns to your MEX-file.

Description Call mexSetTrapFlag to control the MATLAB response to errors in
mexCallMATLAB.

If you do not call mexSetTrapFlag, then whenever MATLAB detects an
error in a call to mexCallMATLAB, MATLAB automatically terminates
the MEX-file and returns control to the MATLAB prompt. Calling
mexSetTrapFlag with trapflag set to 0 is equivalent to not calling
mexSetTrapFlag at all.

If you call mexSetTrapFlag and set the trapflag to 1, then whenever
MATLAB detects an error in a call to mexCallMATLAB, MATLAB does
not automatically terminate the MEX-file. Rather, MATLAB returns
control to the line in the MEX-file immediately following the call
to mexCallMATLAB. The MEX-file is then responsible for taking an
appropriate response to the error.

If you call mexSetTrapFlag, the value of the trapflag you set remains
in effect until the next call to mexSetTrapFlag within that MEX-file or,

2-69

mexSetTrapFlag (C and Fortran)

if there are no more calls to mexSetTrapFlag, until the MEX-file exits.
If a routine defined in a MEX-file calls another MEX-file,

1 The current value of the trapflag in the first MEX-file is saved.

2 The second MEX-file is called with the trapflag initialized to 0
within that file.

3 When the second MEX-file exits, the saved value of the trapflag in
the first MEX-file is restored within that file.

C
Examples

See mexsettrapflag.c in the mex subdirectory of the examples
directory.

See Also mexCallMATLAB, mexCallMATLABWithTrap, mexAtExit, mexErrMsgTxt

2-70

mexUnlock (C and Fortran)

Purpose Allow MEX-file to be cleared from memory

C Syntax #include "mex.h"
void mexUnlock(void);

Fortran
Syntax

mexUnlock()

Description By default, MEX-files are unlocked, meaning that a user can clear
them at any time. Calling mexLock locks a MEX-file so that it cannot
be cleared. Calling mexUnlock removes the lock so that the MEX-file
can be cleared.

mexLock increments a lock count. If you called mexLock n times, you
must call mexUnlock n times to unlock your MEX-file.

C
Examples

See mexlock.c in the mex subdirectory of the examples directory.

See Also mexIsLocked, mexLock, mexMakeArrayPersistent,
mexMakeMemoryPersistent

2-71

mexWarnMsgIdAndTxt (C and Fortran)

Purpose Issue warning message with identifier

C Syntax #include "mex.h"
void mexWarnMsgIdAndTxt(const char *warningid,

const char *warningmsg, ...);

Fortran
Syntax

mexWarnMsgIdAndTxt(warningid, warningmsg)
character*(*) warningid, warningmsg

Arguments warningid
String containing a MATLAB message identifier. For information
on creating identifiers, see “Message Identifiers” in the MATLAB
Programming Fundamentals documentation.

warningmsg
String containing the warning message to be displayed. In C,
the string may include formatting conversion characters, such as
those used with the ANSI C sprintf function.

...
In C, any additional arguments needed to translate formatting
conversion characters used in warningmsg. Each conversion
character in warningmsg is converted to one of these values.

Description Call mexWarnMsgIdAndTxt to write a warning message and its
corresponding identifier to the MATLAB window.

Unlike mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt does not cause the
MEX-file to terminate.

See Also mexErrMsgTxt, mexErrMsgIdAndTxt, mexWarnMsgTxt

2-72

mexWarnMsgTxt (C and Fortran)

Purpose Issue warning message

C Syntax #include "mex.h"
void mexWarnMsgTxt(const char *warningmsg);

Fortran
Syntax

mexWarnMsgTxt(warningmsg)
character*(*) warningmsg

Arguments warningmsg
String containing the warning message to be displayed

Description mexWarnMsgTxt causes MATLAB software to display the contents of
warningmsg.

Unlike mexErrMsgTxt, mexWarnMsgTxt does not cause the MEX-file to
terminate.

C
Examples

See yprime.c in the mex subdirectory of the examples directory.

Additional examples:

• explore.c in the mex subdirectory of the examples directory

• fulltosparse.c in the refbook subdirectory of the examples
directory

• mxisfinite.c and mxsetnzmax.c in the mx subdirectory of the
examples directory

See Also mexErrMsgTxt, mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt

2-73

mwIndex (C and Fortran)

Purpose Type for index values

Description mwIndex is a type that represents index values, such as indices into
arrays. This function is provided for purposes of cross-platform
flexibility. By default, mwIndex is equivalent to int in C. When using
the mex -largeArrayDims switch, mwIndex is equivalent to size_t in
C. mwIndex is equivalent to INTEGER*4 in Fortran. The C header file
containing this type is:

#include "matrix.h"

In Fortran, mwIndex is implemented as a preprocessor macro. The
Fortran header file containing this type is:

#include "fintrf.h"

See Also mex, mwSize

2-74

mwPointer (Fortran)

Purpose Declare appropriate pointer type for platform

Description mwPointer is a preprocessor macro that declares the appropriate
Fortran type representing a pointer to an mxArray or to other data
that is not of a native Fortran type, such as memory allocated by
mxMalloc. On 32-bit platforms, the Fortran type that represents a
pointer is INTEGER*4; on 64-bit platforms, it is INTEGER*8. The Fortran
preprocessor translates mwPointer to the Fortran declaration that is
appropriate for the platform on which you compile your file.

If your Fortran compiler supports preprocessing, you can use mwPointer
to declare functions, arguments, and variables that represent pointers.
If you cannot use mwPointer, you must ensure that your declarations
have the correct size for the platform on which you are compiling
Fortran code.

The Fortran header file containing this type is:

#include "fintrf.h"

Examples This example declares the arguments for mexFunction in a Fortran
MEX-file:

SUBROUTINE MEXFUNCTION(NLHS, PLHS, NRHS, PRHS)
MWPOINTER PLHS(*), PRHS(*)
INTEGER NLHS, NRHS

For additional examples, see the Fortran files with names ending in .F
in the matlabroot/extern/examples directory.

2-75

mwSize (C and Fortran)

Purpose Type for size values

Description mwSize is a type that represents size values, such as array dimensions.
This function is provided for purposes of cross-platform flexibility.
By default, mwSize is equivalent to int in C. When using the mex
-largeArrayDims switch, mwSize is equivalent to size_t in C. mwSize
is equivalent to INTEGER*4 in Fortran.

In Fortran, mwSize is implemented as a preprocessor macro.

The C header file containing this type is:

#include "matrix.h"

The Fortran header file containing this type is:

#include "fintrf.h"

See Also mex, mwIndex

2-76

mxAddField (C and Fortran)

Purpose Add field to structure array

C Syntax #include "matrix.h"
extern int mxAddField(mxArray *pm, const char *fieldname);

Fortran
Syntax

integer*4 mxAddField(pm, fieldname)
mwPointer pm
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray

fieldname
Name of the field you want to add

Returns Field number on success or -1 if inputs are invalid or an out-of-memory
condition occurs.

Description Call mxAddField to add a field to a structure array. You must
then create the values with the mxCreate* functions and use
mxSetFieldByNumber to set the individual values for the field.

See Also mxRemoveField, mxSetFieldByNumber

2-77

mxArray (C and Fortran)

Purpose Type for a MATLAB array

Description The fundamental type underlying MATLAB data. For information on
how the MATLAB array works with MATLAB-supported variables, see
“MATLAB Data” in the External Interfaces documentation.

mxArray is a C language opaque type.

All C and Fortran MEX-files start with a gateway routine, called
mexFunction, which requires mxArray for both input and output
parameters. A C MEX-file gateway routine is described in “C Source
MEX-Files”. The Fortran version is described in “Fortran Source
MEX-Files”.

Once you have MATLAB data in your MEX-file, you can use the array
access library routines (listed in “MX Array Manipulation” on page
1-2) to manipulate the data, and the MEX library routines (listed in
“MEX-Files” on page 1-10) to perform operations in the MATLAB
environment. You use mxArray to pass data to and from these functions.

Use any of the mxCreate* functions when you need to create data, and
the corresponding mxDestroyArray function to free memory.

The header file containing this type is:

#include "matrix.h"

Example See mxcreatecharmatrixfromstr.c in your
matlabroot/extern/examples/mx directory.

The input argument prhs contains two or more strings, defined as
mxArray. Use the mxIsChar function to validate the input. Create a C
variable str of type char using the mxArrayToString function. Now
you can manipulate your data in C.

To set the return values in plhs, use the
mxCreateCharMatrixFromStrings function.

Before you exit your routine, be sure to free memory using the mxFree
function on str.

2-78

mxArray (C and Fortran)

See Also mexFunction, mxClassID, mxCreateDoubleMatrix,
mxCreateNumericArray, mxCreateString, mxDestroyArray,
mxGetData, mxSetData

2-79

mxArrayToString (C)

Purpose Convert array to string

C Syntax #include "matrix.h"
char *mxArrayToString(const mxArray *array_ptr);

Arguments array_ptr
Pointer to a string mxArray; that is, a pointer to an mxArray
having the mxCHAR_CLASS class.

Returns A C-style string. Returns NULL on failure. Possible reasons for failure
include out of memory and specifying an mxArray that is not a string
mxArray.

Description Call mxArrayToString to copy the character data of a string mxArray
into a C-style string. The C-style string is always terminated with a
NULL character.

If the string array contains several rows, they are copied, one column
at a time, into one long string array. This function is similar to
mxGetString, except that

• It does not require the length of the string as an input.

• It supports multibyte character sets.

mxArrayToString does not free the dynamic memory that the char
pointer points to. Consequently, you should typically free the string
(using mxFree) immediately after you have finished using it.

Examples See mexatexit.c in the mex subdirectory of the examples directory.

For additional examples, see mxcreatecharmatrixfromstr.c and
mxislogical.c in the mx subdirectory of the examples directory.

See Also mxCreateCharArray, mxCreateCharMatrixFromStrings,
mxCreateString, mxGetString

2-80

mxAssert (C)

Purpose Check assertion value for debugging purposes

C Syntax #include "matrix.h"
void mxAssert(int expr, char *error_message);

Arguments expr
Value of assertion

error_message
Description of why assertion failed

Description Similar to the ANSI C assert macro, mxAssert checks the value of
an assertion, and continues execution only if the assertion holds. If
expr evaluates to logical 1 (true), mxAssert does nothing. If expr
evaluates to logical 0 (false), mxAssert prints an error to the MATLAB
command window consisting of the failed assertion’s expression, the
filename and line number where the failed assertion occurred, and the
error_message string. The error_message string allows you to specify
a better description of why the assertion failed. Use an empty string if
you don’t want a description to follow the failed assertion message.

For information about MATLAB behavior after a failed assertion,
see “Abnormal Termination” in the Desktop Tools and Development
Environment documentation.

The mex script turns off these assertions when building optimized
MEX-functions, so use this for debugging purposes only. Build the
MEX-file using the syntax mex -g filename in order to use mxAssert.

Assertions are a way of maintaining internal consistency of logic. Use
them to keep yourself from misusing your own code and to prevent
logical errors from propagating before they are caught; do not use
assertions to prevent users of your code from misusing it.

Assertions can be taken out of your code by the C preprocessor. You can
use these checks during development and then remove them when the
code works properly, letting you use them for troubleshooting during
development without slowing down the final product.

2-81

mxAssertS (C)

Purpose Check assertion value without printing assertion text

C Syntax #include "matrix.h"
void mxAssertS(int expr, char *error_message);

Arguments expr
Value of assertion

error_message
Description of why assertion failed

Description mxAssertS is similar to mxAssert, except mxAssertS does not print the
text of the failed assertion.

2-82

mxCalcSingleSubscript (C and Fortran)

Purpose Offset from first element to desired element

C Syntax #include "matrix.h"
mwIndex mxCalcSingleSubscript(const mxArray *pm, mwSize nsubs,

mwIndex *subs);

Fortran
Syntax

mwIndex mxCalcSingleSubscript(pm, nsubs, subs)
mwPointer pm
mwSize nsubs
mwIndex subs

Arguments pm
Pointer to an mxArray

nsubs
The number of elements in the subs array. Typically, you set
nsubs equal to the number of dimensions in the mxArray that
pm points to.

subs
An array of integers. Each value in the array should specify that
dimension’s subscript. In C syntax, the value in subs[0] specifies
the row subscript, and the value in subs[1] specifies the column
subscript. Use zero-based indexing for subscripts. For example,
to express the starting element of a two-dimensional mxArray in
subs, set subs[0] to 0 and subs[1] to 0.

In Fortran syntax, the value in subs(1) specifies the row
subscript, and the value in subs(2) specifies the column subscript.
Use 1-based indexing for subscripts. For example, to express
the starting element of a two-dimensional mxArray in subs, set
subs(1) to 1 and subs(2) to 1.

Returns The number of elements between the start of the mxArray and the
specified subscript. This returned number is called an index; many mx
routines (for example, mxGetField) require an index as an argument.

2-83

mxCalcSingleSubscript (C and Fortran)

If subs describes the starting element of an mxArray,
mxCalcSingleSubscript returns 0. If subs describes the final element
of an mxArray, mxCalcSingleSubscript returns N-1 (where N is the
total number of elements).

Description Call mxCalcSingleSubscript to determine how many elements
there are between the beginning of the mxArray and a given
element of that mxArray. For example, given a subscript like (5,7),
mxCalcSingleSubscript returns the distance from the first element of
the array to the (5,7) element. Remember that the mxArray data type
internally represents all data elements in a one-dimensional array no
matter how many dimensions the MATLAB mxArray appears to have.

MATLAB uses a column-major numbering scheme to represent data
elements internally. That means that MATLAB internally stores data
elements from the first column first, then data elements from the
second column second, and so on through the last column. For example,
suppose you create a 4-by-2 variable. It is helpful to visualize the data
as follows.

A E
B F
C G
D H

In fact, though, MATLAB internally represents the data as the
following:

A B C D E F G H
Index
0

Index
1

Index
2

Index
3

Index
4

Index
5

Index
6

Index
7

If an mxArray is N-dimensional, MATLAB represents the data in
N-major order. For example, consider a three-dimensional array having
dimensions 4-by-2-by-3. Although you can visualize the data as

2-84

mxCalcSingleSubscript (C and Fortran)

MATLAB internally represents the data for this three-dimensional
array in the following order:

A B C D E F G H I J K L M N O P Q R S T U V W X
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Avoid using mxCalcSingleSubscript to traverse the elements of an
array. In C, it is more efficient to do this by finding the array’s starting
address and then using pointer autoincrementing to access successive
elements. For example, to find the starting address of a numerical
array, call mxGetPr or mxGetPi.

C
Examples

See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

See Also mxGetCell, mxSetCell

2-85

mxCalloc (C and Fortran)

Purpose Allocate dynamic memory for array using MATLAB memory manager

C Syntax #include "matrix.h"
#include <stdlib.h>
void *mxCalloc(mwSize n, mwSize size);

Fortran
Syntax

mwPointer mxCalloc(n, size)
mwSize n, size

Arguments n
Number of elements to allocate. This must be a nonnegative
number.

size
Number of bytes per element. (The C sizeof operator calculates
the number of bytes per element.)

Returns A pointer to the start of the allocated dynamic memory, if successful.
If unsuccessful in a stand alone (non-MEX-file) application, mxCalloc
returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the
MEX-file terminates and control returns to the MATLAB prompt.

mxCalloc is unsuccessful when there is insufficient free heap space.

Description MATLAB applications should always call mxCalloc rather than calloc
to allocate memory. The mxCalloc function works differently in
MEX-files than in stand alone MATLAB applications.

In MEX-files, mxCalloc automatically

• Allocates enough contiguous heap space to hold n elements.

• Initializes all n elements to 0.

• Registers the returned heap space with the MATLAB memory
manager.

2-86

mxCalloc (C and Fortran)

The memory manager maintains a list of all memory allocated by
mxCalloc. The memory manager automatically frees (deallocates) all
MEX-file parcels when control returns to the MATLAB prompt.

In stand alone MATLAB C applications, mxCalloc calls the ANSI C
calloc function.

By default, in a MEX-file, mxCalloc generates nonpersistent mxCalloc
data. In other words, the memory manager automatically deallocates
the memory as soon as the MEX-file ends. If you want the memory to
persist after the MEX-file completes, call mexMakeMemoryPersistent
after calling mxCalloc. If you write a MEX-file with persistent memory,
be sure to register a mexAtExit function to free allocated memory in
the event your MEX-file is cleared.

When you finish using the memory allocated by mxCalloc, call mxFree
to deallocate the memory.

C
Examples

See

• explore.c in the mex subdirectory of the examples directory

• phonebook.c and revord.c in the refbook subdirectory of the
examples directory

For additional examples, see mxcalcsinglesubscript.c and
mxsetdimensions.c in the mx subdirectory of the examples directory.

See Also mexAtExit, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mxDestroyArray, mxFree, mxMalloc, mxRealloc

2-87

mxChar (C)

Purpose Type for string mxArray

Description A string mxArray stores its data elements as mxChar rather than as
char.

The header file containing this type is:

#include "matrix.h"

Examples See mxmalloc.c in the mx subdirectory of the examples directory.

Additional examples:

• explore.c in the mex subdirectory of the examples directory

• mxcreatecharmatrixfromstr.c in the mx subdirectory of the
examples directory

See Also mxCreateCharArray

2-88

mxClassID (C)

Purpose Enumerated value identifying class of mxArray

C Syntax typedef enum {
mxUNKNOWN_CLASS,
mxCELL_CLASS,
mxSTRUCT_CLASS,
mxLOGICAL_CLASS,
mxCHAR_CLASS,
mxDOUBLE_CLASS,
mxSINGLE_CLASS,
mxINT8_CLASS,
mxUINT8_CLASS,
mxINT16_CLASS,
mxUINT16_CLASS,
mxINT32_CLASS,
mxUINT32_CLASS,
mxINT64_CLASS,
mxUINT64_CLASS,
mxFUNCTION_CLASS

} mxClassID;

Constants mxUNKNOWN_CLASS
The class cannot be determined. You cannot specify this category
for an mxArray; however, mxGetClassID can return this value
if it cannot identify the class.

mxCELL_CLASS
Identifies a cell mxArray.

mxSTRUCT_CLASS
Identifies a structure mxArray.

mxLOGICAL_CLASS
Identifies a logical mxArray, an mxArray whose data is represented
as mxLogical.

mxCHAR_CLASS
Identifies a string mxArray, an mxArray whose data is represented
as mxChar.

2-89

mxClassID (C)

mxDOUBLE_CLASS
Identifies a numeric mxArray whose data is stored as
double-precision, floating-point numbers.

mxSINGLE_CLASS
Identifies a numeric mxArray whose data is stored as
single-precision, floating-point numbers.

mxINT8_CLASS
Identifies a numeric mxArray whose data is stored as signed 8-bit
integers.

mxUINT8_CLASS
Identifies a numeric mxArray whose data is stored as unsigned
8-bit integers.

mxINT16_CLASS
Identifies a numeric mxArray whose data is stored as signed
16-bit integers.

mxUINT16_CLASS
Identifies a numeric mxArray whose data is stored as unsigned
16-bit integers.

mxINT32_CLASS
Identifies a numeric mxArray whose data is stored as signed
32-bit integers.

mxUINT32_CLASS
Identifies a numeric mxArray whose data is stored as unsigned
32-bit integers.

mxINT64_CLASS
Identifies a numeric mxArray whose data is stored as signed
64-bit integers.

mxUINT64_CLASS
Identifies a numeric mxArray whose data is stored as unsigned
64-bit integers.

mxFUNCTION_CLASS
Identifies a function handle mxArray.

2-90

mxClassID (C)

Description Various mx* calls require or return an mxClassID argument. mxClassID
identifies the way in which the mxArray represents its data elements.

Examples See explore.c in the mex subdirectory of the examples directory.

See Also mxGetClassID , mxCreateNumericArray

2-91

mxClassIDFromClassName (Fortran)

Purpose Identifier corresponding to class

Fortran
Syntax

integer*4 mxClassIDFromClassName(classname)
character*(*) classname

Arguments classname
A character array specifying a MATLAB class name. Use one of
the strings from the following table.

Returns A numeric identifier used internally by MATLAB software to represent
the MATLAB class, classname. Returns unknown if classname is not a
recognized MATLAB class.

Description Use mxClassIDFromClassName to obtain an identifier for any class that
is recognized by MATLAB software. This function is most commonly
used to provide a classid argument to mxCreateNumericArray and
mxCreateNumericMatrix.

Valid choices for classname are listed in the mxIsClass reference page.

See Also mxGetClassName, mxCreateNumericArray, mxCreateNumericMatrix,
mxIsClass

2-92

mxComplexity (C)

Purpose Flag specifying whether mxArray has imaginary components

C Syntax typedef enum mxComplexity {mxREAL=0, mxCOMPLEX};

Constants mxREAL
Identifies an mxArray with no imaginary components.

mxCOMPLEX
Identifies an mxArray with imaginary components.

Description Various mx* calls require an mxComplexity argument. You can set an
mxComplex argument to either mxREAL or mxCOMPLEX.

Examples See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

See Also mxCreateNumericArray, mxCreateDoubleMatrix, mxCreateSparse

2-93

mxCopyCharacterToPtr (Fortran)

Purpose Copy character values from Fortran array to pointer array

Fortran
Syntax

mxCopyCharacterToPtr(y, px, n)
character*(*) y
mwPointer px
mwSize n

Arguments y
character Fortran array

px
Pointer to character or name array

n
Number of elements to copy

Description mxCopyCharacterToPtr copies n character values from the Fortran
character array y into the MATLAB string array pointed to by px. This
subroutine is essential for copying character data between MATLAB
pointer arrays and ordinary Fortran character arrays.

See Also mxCopyPtrToCharacter, mxCreateCharArray, mxCreateString,
mxCreateCharMatrixFromStrings

2-94

mxCopyComplex16ToPtr (Fortran)

Purpose Copy COMPLEX*16 values from Fortran array to pointer array

Fortran
Syntax

mxCopyComplex16ToPtr(y, pr, pi, n)
complex*16 y(n)
mwPointer pr, pi
mwSize n

Arguments y
COMPLEX*16 Fortran array

pr
Pointer to the real data of a double-precision MATLAB array

pi
Pointer to the imaginary data of a double-precision MATLAB
array

n
Number of elements to copy

Description mxCopyComplex16ToPtr copies n COMPLEX*16 values from the Fortran
COMPLEX*16 array y into the MATLAB arrays pointed to by pr and pi.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

See Also mxCopyPtrToComplex16, mxCreateNumericArray,
mxCreateNumericMatrix, mxGetData, mxGetImagData

2-95

mxCopyComplex8ToPtr (Fortran)

Purpose Copy COMPLEX*8 values from Fortran array to pointer array

Fortran
Syntax

mxCopyComplex8ToPtr(y, pr, pi, n)
complex*8 y(n)
mwPointer pr, pi
mwSize n

Arguments y
COMPLEX*8 Fortran array

pr
Pointer to the real data of a single-precision MATLAB array

pi
Pointer to the imaginary data of a single-precision MATLAB array

n
Number of elements to copy

Description mxCopyComplex8ToPtr copies n COMPLEX*8 values from the Fortran
COMPLEX*8 array y into the MATLAB arrays pointed to by pr and pi.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

See Also mxCopyPtrToComplex8, mxCreateNumericArray,
mxCreateNumericMatrix, mxGetData, mxGetImagData

2-96

mxCopyInteger1ToPtr (Fortran)

Purpose Copy INTEGER*1 values from Fortran array to pointer array

Fortran
Syntax

mxCopyInteger1ToPtr(y, px, n)
integer*1 y(n)
mwPointer px
mwSize n

Arguments y
INTEGER*1 Fortran array

px
Pointer to the real or imaginary data of the array

n
Number of elements to copy

Description mxCopyInteger1ToPtr copies n INTEGER*1 values from the Fortran
INTEGER*1 array y into the MATLAB array pointed to by px, either a
real or an imaginary array. This subroutine is essential for use with
Fortran compilers that do not support the %VAL construct in order
to set up standard Fortran arrays for passing as arguments to the
computation routine of a MEX-file.

See Also mxCopyPtrToInteger1, mxCreateNumericArray,
mxCreateNumericMatrix

2-97

mxCopyInteger2ToPtr (Fortran)

Purpose Copy INTEGER*2 values from Fortran array to pointer array

Fortran
Syntax

mxCopyInteger2ToPtr(y, px, n)
integer*2 y(n)
mwPointer px
mwSize n

Arguments y
INTEGER*2 Fortran array

px
Pointer to the real or imaginary data of the array

n
Number of elements to copy

Description mxCopyInteger2ToPtr copies n INTEGER*2 values from the Fortran
INTEGER*2 array y into the MATLAB array pointed to by px, either a
real or an imaginary array. This subroutine is essential for use with
Fortran compilers that do not support the %VAL construct in order
to set up standard Fortran arrays for passing as arguments to the
computation routine of a MEX-file.

See Also mxCopyPtrToInteger2, mxCreateNumericArray,
mxCreateNumericMatrix

2-98

mxCopyInteger4ToPtr (Fortran)

Purpose Copy INTEGER*4 values from Fortran array to pointer array

Fortran
Syntax

mxCopyInteger4ToPtr(y, px, n)
integer*4 y(n)
mwPointer px
mwSize n

Arguments y
INTEGER*4 Fortran array

px
Pointer to the real or imaginary data of the array

n
Number of elements to copy

Description mxCopyInteger4ToPtr copies n INTEGER*4 values from the Fortran
INTEGER*4 array y into the MATLAB array pointed to by px, either a
real or an imaginary array. This subroutine is essential for use with
Fortran compilers that do not support the %VAL construct in order
to set up standard Fortran arrays for passing as arguments to the
computation routine of a MEX-file.

See Also mxCopyPtrToInteger4, mxCreateNumericArray,
mxCreateNumericMatrix

2-99

mxCopyPtrToCharacter (Fortran)

Purpose Copy character values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToCharacter(px, y, n)
mwPointer px
character*(*) y
mwSize n

Arguments px
Pointer to character or name array

y
character Fortran array

n
Number of elements to copy

Description mxCopyPtrToCharacter copies n character values from the MATLAB
array pointed to by px into the Fortran character array y. This
subroutine is essential for copying character data from MATLAB
pointer arrays into ordinary Fortran character arrays.

Examples See matdemo2.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxCopyCharacterToPtr, mxCreateCharArray, mxCreateString,
mxCreateCharMatrixFromStrings

2-100

mxCopyPtrToComplex16 (Fortran)

Purpose Copy COMPLEX*16 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToComplex16(pr, pi, y, n)
mwPointer pr, pi
complex*16 y(n)
mwSize n

Arguments pr
Pointer to the real data of a double-precision MATLAB array

pi
Pointer to the imaginary data of a double-precision MATLAB
array

y
COMPLEX*16 Fortran array

n
Number of elements to copy

Description mxCopyPtrToComplex16 copies n COMPLEX*16 values from the MATLAB
arrays pointed to by pr and pi into the Fortran COMPLEX*16 array y.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

See Also mxCopyComplex16ToPtr, mxCreateNumericArray,
mxCreateNumericMatrix, mxGetData, mxGetImagData

2-101

mxCopyPtrToComplex8 (Fortran)

Purpose Copy COMPLEX*8 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToComplex8(pr, pi, y, n)
mwPointer pr, pi
complex*8 y(n)
mwSize n

Arguments pr
Pointer to the real data of a single-precision MATLAB array

pi
Pointer to the imaginary data of a single-precision MATLAB array

y
COMPLEX*8 Fortran array

n
Number of elements to copy

Description mxCopyPtrToComplex8 copies n COMPLEX*8 values from the MATLAB
arrays pointed to by pr and pi into the Fortran COMPLEX*8 array y.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

See Also mxCopyComplex8ToPtr, mxCreateNumericArray,
mxCreateNumericMatrix, mxGetData, mxGetImagData

2-102

mxCopyPtrToInteger1 (Fortran)

Purpose Copy INTEGER*1 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToInteger1(px, y, n)
mwPointer px
integer*1 y(n)
mwSize n

Arguments px
Pointer to the real or imaginary data of the array

y
INTEGER*1 Fortran array

n
Number of elements to copy

Description mxCopyPtrToInteger1 copies n INTEGER*1 values from the MATLAB
array pointed to by px, either a real or imaginary array, into the Fortran
INTEGER*1 array y. This subroutine is essential for use with Fortran
compilers that do not support the %VAL construct in order to set up
standard Fortran arrays for passing as arguments to the computation
routine of a MEX-file.

See Also mxCopyInteger1ToPtr, mxCreateNumericArray,
mxCreateNumericMatrix

2-103

mxCopyPtrToInteger2 (Fortran)

Purpose Copy INTEGER*2 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToInteger2(px, y, n)
mwPointer px
integer*2 y(n)
mwSize n

Arguments px
Pointer to the real or imaginary data of the array

y
INTEGER*2 Fortran array

n
Number of elements to copy

Description mxCopyPtrToInteger2 copies n INTEGER*2 values from the MATLAB
array pointed to by px, either a real or an imaginary array, into the
Fortran INTEGER*2 array y. This subroutine is essential for use with
Fortran compilers that do not support the %VAL construct in order
to set up standard Fortran arrays for passing as arguments to the
computation routine of a MEX-file.

See Also mxCopyInteger2ToPtr, mxCreateNumericArray,
mxCreateNumericMatrix

2-104

mxCopyPtrToInteger4 (Fortran)

Purpose Copy INTEGER*4 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToInteger4(px, y, n)
mwPointer px
integer*4 y(n)
mwSize n

Arguments px
Pointer to the real or imaginary data of the array

y
INTEGER*4 Fortran array

n
Number of elements to copy

Description mxCopyPtrToInteger4 copies n INTEGER*4 values from the MATLAB
array pointed to by px, either a real or an imaginary array, into the
Fortran INTEGER*4 array y. This subroutine is essential for use with
Fortran compilers that do not support the %VAL construct in order
to set up standard Fortran arrays for passing as arguments to the
computation routine of a MEX-file.

See Also mxCopyInteger4ToPtr, mxCreateNumericArray,
mxCreateNumericMatrix

2-105

mxCopyPtrToPtrArray (Fortran)

Purpose Copy pointer values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToPtrArray(px, y, n)
mwPointer px
mwPointer y(n)
mwSize n

Arguments px
Pointer to pointer array

y
Fortran array of mwPointer values

n
Number of pointers to copy

Description mxCopyPtrToPtrArray copies n pointers from the MATLAB array
pointed to by px into the Fortran array y. This subroutine is essential
for copying the output of matGetDir into an array of pointers. After
calling this function, each element of y contains a pointer to a string.
You can convert these strings to Fortran character arrays by passing
each element of y as the first argument to mxCopyPtrToCharacter.

Examples See matdemo2.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this routine in a
Fortran program.

See Also matGetDir, mxCopyPtrToCharacter

2-106

mxCopyPtrToReal4 (Fortran)

Purpose Copy REAL*4 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToReal4(px, y, n)
mwPointer px
real*4 y(n)
mwSize n

Arguments px
Pointer to the real or imaginary data of a single-precision
MATLAB array

y
REAL*4 Fortran array

n
Number of elements to copy

Description mxCopyPtrToReal4 copies n REAL*4 values from the MATLAB array
pointed to by px, either a pr or pi array, into the Fortran REAL*4 array
y. This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

See Also mxCopyReal4ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

2-107

mxCopyPtrToReal8 (Fortran)

Purpose Copy REAL*8 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToReal8(px, y, n)
mwPointer px
real*8 y(n)
mwSize n

Arguments px
Pointer to the real or imaginary data of a double-precision
MATLAB array

y
REAL*8 Fortran array

n
Number of elements to copy

Description mxCopyPtrToReal8 copies n REAL*8 values from the MATLAB array
pointed to by px, either a pr or pi array, into the Fortran REAL*8 array
y. This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

Examples See fengdemo.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxCopyReal8ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

2-108

mxCopyReal4ToPtr (Fortran)

Purpose Copy REAL*4 values from Fortran array to pointer array

Fortran
Syntax

mxCopyReal4ToPtr(y, px, n)
real*4 y(n)
mwPointer px
mwSize n

Arguments y
REAL*4 Fortran array

px
Pointer to the real or imaginary data of a single-precision
MATLAB array

n
Number of elements to copy

Description mxCopyReal4ToPtr copies n REAL*4 values from the Fortran REAL*4
array y into the MATLAB array pointed to by px, either a pr or pi array.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

See Also mxCopyPtrToReal4, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

2-109

mxCopyReal8ToPtr (Fortran)

Purpose Copy REAL*8 values from Fortran array to pointer array

Fortran
Syntax

mxCopyReal8ToPtr(y, px, n)
real*8 y(n)
mwPointer px
mwSize n

Arguments y
REAL*8 Fortran array

px
Pointer to the real or imaginary data of a double-precision
MATLAB array

n
Number of elements to copy

Description mxCopyReal8ToPtr copies n REAL*8 values from the Fortran REAL*8
array y into the MATLAB array pointed to by px, either a pr or pi array.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

Examples See matdemo1.F and fengdemo.F in the eng_mat subdirectory of the
examples directory for a sample program that illustrates how to use
this routine in a Fortran program.

See Also mxCopyPtrToReal8, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

2-110

mxCreateCellArray (C and Fortran)

Purpose Create unpopulated N-D cell mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCellArray(mwSize ndim, const mwSize *dims);

Fortran
Syntax

mwPointer mxCreateCellArray(ndim, dims)
mwSize ndim, dims

Arguments ndim
The desired number of dimensions in the created cell. For
example, to create a three-dimensional cell mxArray, set ndim to 3.

dims
The dimensions array. Each element in the dimensions array
contains the size of the mxArray in that dimension. For example,
in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

Returns A pointer to the created cell mxArray, if successful. If unsuccessful in
a stand alone (non-MEX-file) application, mxCreateCellArray returns
NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the MEX-file
terminates and control returns to the MATLAB prompt. The most
common cause of failure is insufficient free heap space.

Description Use mxCreateCellArray to create a cell mxArray whose size is defined
by ndim and dims. For example, in C, to establish a three-dimensional
cell mxArray having dimensions 4-by-8-by-7, set:

ndim = 3;
dims[0] = 4; dims[1] = 8; dims[2] = 7;

In Fortran, to establish a three-dimensional cell mxArray having
dimensions 4-by-8-by-7, set:

ndim = 3;

2-111

mxCreateCellArray (C and Fortran)

dims(1) = 4; dims(2) = 8; dims(3) = 7;

The created cell mxArray is unpopulated; mxCreateCellArray initializes
each cell to NULL. To put data into a cell, call mxSetCell.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim
equals 5 and dims equals [4 1 7 1 1], the resulting array is given
the dimensions 4-by-1-by-7.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxCreateCellMatrix, mxGetCell, mxSetCell, mxIsCell

2-112

mxCreateCellMatrix (C and Fortran)

Purpose Create unpopulated 2-D cell mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCellMatrix(mwSize m, mwSize n);

Fortran
Syntax

mwPointer mxCreateCellMatrix(m, n)
mwSize m, n

Arguments m
The desired number of rows

n
The desired number of columns

Returns A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand alone (non-MEX-file) application, mxCreateCellMatrix returns
NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the MEX-file
terminates and control returns to the MATLAB prompt. Insufficient
free heap space is the only reason for mxCreateCellMatrix to be
unsuccessful.

Description Use mxCreateCellMatrix to create an m-by-n two-dimensional cell
mxArray. The created cell mxArray is unpopulated; mxCreateCellMatrix
initializes each cell to NULL in C (0 in Fortran). To put data into cells,
call mxSetCell.

mxCreateCellMatrix is identical to mxCreateCellArray except that
mxCreateCellMatrix can create two-dimensional mxArrays only,
but mxCreateCellArray can create mxArrays having any number of
dimensions greater than 1.

C
Examples

See mxcreatecellmatrix.c in the mx subdirectory of the examples
directory.

See Also mxCreateCellArray

2-113

mxCreateCharArray (C and Fortran)

Purpose Create unpopulated N-D string mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCharArray(mwSize ndim, const mwSize *dims);

Fortran
Syntax

mwPointer mxCreateCharArray(ndim, dims)
mwSize ndim, dims

Arguments ndim
The desired number of dimensions in the string mxArray.
You must specify a positive number. If you specify 0, 1, or 2,
mxCreateCharArray creates a two-dimensional mxArray.

dims
The dimensions array. Each element in the dimensions array
contains the size of the array in that dimension. For example,
in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 character mxArray. The dims array must
have at least ndim elements.

Returns A pointer to the created string mxArray, if successful. If unsuccessful
in a stand alone (non-MEX-file) application, mxCreateCharArray
returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the
MEX-file terminates and control returns to the MATLAB prompt.
Insufficient free heap space is the only reason for mxCreateCharArray
to be unsuccessful.

Description Call mxCreateCharArray to create an N-dimensional string mxArray.
The created mxArray is unpopulated; that is, mxCreateCharArray
initializes each cell to NULL in C (0 in Fortran).

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim
equals 5 and dims equals [4 1 7 1 1], the resulting array is given
the dimensions 4-by-1-by-7.

2-114

mxCreateCharArray (C and Fortran)

C
Examples

See mxcreatecharmatrixfromstr.c in the mx subdirectory of the
examples directory.

See Also mxCreateCharMatrixFromStrings, mxCreateString

2-115

mxCreateCharMatrixFromStrings (C and Fortran)

Purpose Create populated 2-D string mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCharMatrixFromStrings(mwSize m, const char **str);

Fortran
Syntax

mwPointer mxCreateCharMatrixFromStrings(m, str)
mwSize m
character*(*) str(m)

Arguments m
The desired number of rows in the created string mxArray. The
value you specify for m should equal the number of strings in str.

str
In C, an array of strings containing at least m strings. In Fortran,
a character*n array of size m, where each element of the array
is n bytes.

Returns A pointer to the created string mxArray, if successful. If
unsuccessful in a stand alone (non-MEX-file) application,
mxCreateCharMatrixFromStrings returns NULL in C (0 in Fortran). If
unsuccessful in a MEX-file, the MEX-file terminates and control returns
to the MATLAB prompt. Insufficient free heap space is the primary
reason for mxCreateCharMatrixFromStrings to be unsuccessful.
Another possible reason for failure is that str contains fewer than m
strings.

Description Use mxCreateCharMatrixFromStrings to create a two-dimensional
string mxArray, where each row is initialized to a string from str. In
C, the created mxArray has dimensions m-by-max, where max is the
length of the longest string in str. In Fortran, the created mxArray has
dimensions m-by-n, where n is the number of characters in str(i).

Note that string mxArrays represent their data elements as mxChar
rather than as C char.

2-116

mxCreateCharMatrixFromStrings (C and Fortran)

C
Examples

See mxcreatecharmatrixfromstr.c in the mx subdirectory of the
examples directory.

See Also mxCreateCharArray, mxCreateString, mxGetString

2-117

mxCreateDoubleMatrix (C and Fortran)

Purpose Create 2-D, double-precision, floating-point mxArray initialized to 0

C Syntax #include "matrix.h"
mxArray *mxCreateDoubleMatrix(mwSize m, mwSize n,

mxComplexity ComplexFlag);

Fortran
Syntax

mwPointer mxCreateDoubleMatrix(m, n, ComplexFlag)
mwSize m, n
integer*4 ComplexFlag

Arguments m
The desired number of rows

n
The desired number of columns

ComplexFlag
Specify either mxREAL or mxCOMPLEX. If the data you plan to put
into the mxArray has no imaginary components, specify mxREAL
in C (0 in Fortran). If the data has some imaginary components,
specify mxCOMPLEX in C (1 in Fortran).

Returns A pointer to the created mxArray, if successful. If unsuccessful in
a stand alone (non-MEX-file) application, mxCreateDoubleMatrix
returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the
MEX-file terminates and control returns to the MATLAB prompt.
mxCreateDoubleMatrix is unsuccessful when there is not enough free
heap space to create the mxArray.

Description Use mxCreateDoubleMatrix to create an m-by-n mxArray.
mxCreateDoubleMatrix initializes each element in the pr array
to 0. If you set ComplexFlag to mxCOMPLEX in C (1 in Fortran),
mxCreateDoubleMatrix also initializes each element in the pi array
to 0.

If you set ComplexFlag to mxREAL in C (0 in Fortran),
mxCreateDoubleMatrix allocates enough memory to hold m-by-n real
elements. If you set ComplexFlag to mxCOMPLEX in C (1 in Fortran),

2-118

mxCreateDoubleMatrix (C and Fortran)

mxCreateDoubleMatrix allocates enough memory to hold m-by-n real
elements and m-by-n imaginary elements.

Call mxDestroyArray when you finish using the mxArray.
mxDestroyArray deallocates the mxArray and its associated real and
complex elements.

C
Examples

See convec.c, findnz.c, sincall.c, timestwo.c, timestwoalt.c, and
xtimesy.c in the refbook subdirectory of the examples directory.

See Also mxCreateNumericArray

2-119

mxCreateDoubleScalar (C and Fortran)

Purpose Create scalar, double-precision array initialized to specified value

C Syntax #include "matrix.h"
mxArray *mxCreateDoubleScalar(double value);

Fortran
Syntax

mwPointer mxCreateDoubleScalar(value)
real*8 value

Arguments value
The desired value to which you want to initialize the array

Returns A pointer to the created mxArray, if successful. mxCreateDoubleScalar
is unsuccessful if there is not enough free heap space to create the
mxArray. If mxCreateDoubleScalar is unsuccessful in a MEX-file,
the MEX-file prints an “Out of Memory” message, terminates, and
control returns to the MATLAB prompt. If mxCreateDoubleScalar
is unsuccessful in a stand alone (non-MEX-file) application,
mxCreateDoubleScalar returns NULL in C (0 in Fortran).

Description Call mxCreateDoubleScalar to create a scalar double mxArray.
mxCreateDoubleScalar is a convenience function that can be used in
place of the following C code:

pa = mxCreateDoubleMatrix(1, 1, mxREAL);
*mxGetPr(pa) = value;

mxCreateDoubleScalar can be used in place of the following Fortran
code:

pm = mxCreateDoubleMatrix(1, 1, 0)
mxCopyReal8ToPtr(value, mxGetPr(pm), 1)

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also mxGetPr, mxCreateDoubleMatrix

2-120

mxCreateLogicalArray (C)

Purpose Create N-D logical mxArray initialized to false

C Syntax #include "matrix.h"
mxArray *mxCreateLogicalArray(mwSize ndim, const mwSize *dims);

Arguments ndim
Number of dimensions. If you specify a value for ndim that is less
than 2, mxCreateLogicalArray automatically sets the number
of dimensions to 2.

dims
The dimensions array. Each element in the dimensions array
contains the size of the array in that dimension. For example,
setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxArray. There should be ndim elements in the dims array.

Returns A pointer to the created mxArray, if successful. If unsuccessful in
a stand alone (non-MEX-file) application, mxCreateLogicalArray
returns NULL. If unsuccessful in a MEX-file, the MEX-file terminates
and control returns to the MATLAB prompt. mxCreateLogicalArray
is unsuccessful when there is not enough free heap space to create the
mxArray.

Description Call mxCreateLogicalArray to create an N-dimensional
mxArray of mxLogical elements. After creating the mxArray,
mxCreateLogicalArray initializes all its elements to logical 0.
mxCreateLogicalArray differs from mxCreateLogicalMatrix in that
the latter can create two-dimensional arrays only.

mxCreateLogicalArray allocates dynamic memory to store the
created mxArray. When you finish with the created mxArray, call
mxDestroyArray to deallocate its memory.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim
equals 5 and dims equals [4 1 7 1 1], the resulting array is given
the dimensions 4-by-1-by-7.

2-121

mxCreateLogicalArray (C)

See Also mxCreateLogicalMatrix, mxCreateSparseLogicalMatrix,
mxCreateLogicalScalar

2-122

mxCreateLogicalMatrix (C)

Purpose Create 2-D, logical mxArray initialized to false

C Syntax #include "matrix.h"
mxArray *mxCreateLogicalMatrix(mwSize m, mwSize n);

Arguments m
The desired number of rows

n
The desired number of columns

Returns A pointer to the created mxArray, if successful. If unsuccessful in
a stand alone (non-MEX-file) application, mxCreateLogicalMatrix
returns NULL. If unsuccessful in a MEX-file, the MEX-file terminates
and control returns to the MATLAB prompt. mxCreateLogicalMatrix
is unsuccessful when there is not enough free heap space to create the
mxArray.

Description Use mxCreateLogicalMatrix to create an m-by-n mxArray of mxLogical
elements. mxCreateLogicalMatrix initializes each element in the
array to logical 0.

Call mxDestroyArray when you finish using the mxArray.
mxDestroyArray deallocates the mxArray.

See Also mxCreateLogicalArray, mxCreateSparseLogicalMatrix,
mxCreateLogicalScalar

2-123

mxCreateLogicalScalar (C)

Purpose Create scalar, logical mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateLogicalScalar(mxLogical value);

Arguments value
The desired logical value to which you want to initialize the array

Returns A pointer to the created mxArray, if successful. mxCreateLogicalScalar
is unsuccessful if there is not enough free heap space to create the
mxArray. If mxCreateLogicalScalar is unsuccessful in a MEX-file,
the MEX-file prints an “Out of Memory” message, terminates, and
returns control to the MATLAB prompt. If mxCreateLogicalScalar is
unsuccessful in a stand alone (non-MEX-file) application, the function
returns NULL.

Description Call mxCreateLogicalScalar to create a scalar logical mxArray.
mxCreateLogicalScalar is a convenience function that can be used in
place of the following code:

pa = mxCreateLogicalMatrix(1, 1);
*mxGetLogicals(pa) = value;

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also mxCreateLogicalArray, mxCreateLogicalMatrix,
mxIsLogicalScalar, mxIsLogicalScalarTrue, mxGetLogicals,
mxDestroyArray

2-124

mxCreateNumericArray (C and Fortran)

Purpose Create unpopulated N-D numeric mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateNumericArray(mwSize ndim, const mwSize *dims,

mxClassID classid, mxComplexity ComplexFlag);

Fortran
Syntax

mwPointer mxCreateNumericArray(ndim, dims, classid,
ComplexFlag)

mwSize ndim, dims
integer*4 classid, ComplexFlag

Arguments ndim
Number of dimensions. If you specify a value for ndim that is less
than 2, mxCreateNumericArray automatically sets the number
of dimensions to 2.

dims
The dimensions array. Each element in the dimensions array
contains the size of the array in that dimension. For example,
in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

classid
An identifier for the class of the array, which determines the
way the numerical data is represented in memory. For example,
specifying mxINT16_CLASS in C causes each piece of numerical
data in the mxArray to be represented as a 16-bit signed integer.
In Fortran, use the function mxClassIDFromClassName to
derive the classid value from a MATLAB class name. See the
Description section for more information.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary
components, specify mxREAL in C (0 in Fortran). If the data
has some imaginary components, specify mxCOMPLEX in C (1 in
Fortran).

2-125

mxCreateNumericArray (C and Fortran)

Returns A pointer to the created mxArray, if successful. If unsuccessful in
a stand alone (non-MEX-file) application, mxCreateNumericArray
returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the
MEX-file terminates and control returns to the MATLAB prompt.
mxCreateNumericArray is unsuccessful when there is not enough free
heap space to create the mxArray.

Description Call mxCreateNumericArray to create an N-dimensional mxArray
in which all data elements have the numeric data type specified
by classid. After creating the mxArray, mxCreateNumericArray
initializes all its real data elements to 0. If ComplexFlag equals
mxCOMPLEX in C (1 in Fortran), mxCreateNumericArray also initializes
all its imaginary data elements to 0. mxCreateNumericArray differs
from mxCreateDoubleMatrix in two important respects:

• All data elements in mxCreateDoubleMatrix are double-precision,
floating-point numbers. The data elements in mxCreateNumericArray
could be any numerical type, including different integer precisions.

• mxCreateDoubleMatrix can create two-dimensional arrays only;
mxCreateNumericArray can create arrays of two or more dimensions.

mxCreateNumericArray allocates dynamic memory to store the
created mxArray. When you finish with the created mxArray, call
mxDestroyArray to deallocate its memory.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim
equals 5 and dims equals [4 1 7 1 1], the resulting array is given
the dimensions 4-by-1-by-7.

The following table shows the C classid values and the Fortran data
types that are equivalent to MATLAB classes.

MATLAB Class
Name C classid Value Fortran Type

int8 mxINT8_CLASS BYTE

2-126

mxCreateNumericArray (C and Fortran)

MATLAB Class
Name C classid Value Fortran Type

uint8 mxUINT8_CLASS

int16 mxINT16_CLASS INTEGER*2

uint16 mxUINT16_CLASS

int32 mxINT32_CLASS INTEGER*4

uint32 mxUINT32_CLASS

int64 mxINT64_CLASS INTEGER*8

uint64 mxUINT64_CLASS

single mxSINGLE_CLASS REAL*4

double mxDOUBLE_CLASS REAL*8

single, with
imaginary
components

mxSINGLE_CLASS COMPLEX*8

double, with
imaginary
components

mxDOUBLE_CLASS COMPLEX*16

C
Examples

See phonebook.c and doubleelement.c in the refbook subdirectory of
the examples directory. For an additional example, see mxisfinite.c
in the mx subdirectory of the examples directory.

Fortran
Examples

To create a 4-by-4-by-2 array of REAL*8 elements having no imaginary
components, use:

C Create 4x4x2 mxArray of REAL*8
data dims / 4, 4, 2 /
mxCreateNumericArray(3, dims,

+ mxClassIDFromClassName('double'), 0)

See Also mxClassId, mxClassIdFromClassName, mxComplexity,
mxCreateNumericMatrix

2-127

mxCreateNumericMatrix (C and Fortran)

Purpose Create numeric matrix and initialize data elements to 0

C Syntax #include "matrix.h"
mxArray *mxCreateNumericMatrix(mwSize m, mwSize n,

mxClassID classid, mxComplexity ComplexFlag);

Fortran
Syntax

mwPointer mxCreateNumericMatrix(m, n, classid,
ComplexFlag)

mwSize m, n
integer*4 classid, ComplexFlag

Arguments m
The desired number of rows.

n
The desired number of columns.

classid
An identifier for the class of the array, which determines the
way the numerical data is represented in memory. For example,
specifying mxINT16_CLASS in C causes each piece of numerical
data in the mxArray to be represented as a 16-bit signed integer.
In Fortran, use the function mxClassIDFromClassName to
derive the classid value from a MATLAB class name. See the
Description section for more information.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary
components, specify mxREAL in C (0 in Fortran). If the data
has some imaginary components, specify mxCOMPLEX in C (1 in
Fortran).

Returns A pointer to the created mxArray, if successful. mxCreateNumericMatrix
is unsuccessful if there is not enough free heap space to create the
mxArray. If mxCreateNumericMatrix is unsuccessful in a MEX-file,
the MEX-file prints an “Out of Memory” message, terminates, and
control returns to the MATLAB prompt. If mxCreateNumericMatrix

2-128

mxCreateNumericMatrix (C and Fortran)

is unsuccessful in a stand alone (non-MEX-file) application,
mxCreateNumericMatrix returns NULL in C (0 in Fortran).

Description Call mxCreateNumericMatrix to create a 2-D mxArray in which all
data elements have the numeric data type specified by classid. After
creating the mxArray, mxCreateNumericMatrix initializes all its real
data elements to 0. If ComplexFlag equals mxCOMPLEX in C (1 in
Fortran), mxCreateNumericMatrix also initializes all its imaginary
data elements to 0. mxCreateNumericMatrix allocates dynamic memory
to store the created mxArray. When you finish using the mxArray, call
mxDestroyArray to destroy it.

The following table shows the C classid values and the Fortran data
types that are equivalent to MATLAB classes.

MATLAB Class
Name C classid Value Fortran Type

int8 mxINT8_CLASS BYTE

uint8 mxUINT8_CLASS

int16 mxINT16_CLASS INTEGER*2

uint16 mxUINT16_CLASS

int32 mxINT32_CLASS INTEGER*4

uint32 mxUINT32_CLASS

int64 mxINT64_CLASS INTEGER*8

uint64 mxUINT64_CLASS

single mxSINGLE_CLASS REAL*4

double mxDOUBLE_CLASS REAL*8

2-129

mxCreateNumericMatrix (C and Fortran)

MATLAB Class
Name C classid Value Fortran Type

single, with
imaginary
components

mxSINGLE_CLASS COMPLEX*8

double, with
imaginary
components

mxDOUBLE_CLASS COMPLEX*16

Fortran
Examples

To create a 4-by-3 matrix of REAL*4 elements having no imaginary
components, use:

C Create 4x3 mxArray of REAL*4
mxCreateNumericMatrix(4, 3,

+ mxClassIDFromClassName('single'), 0)

See Also mxClassId, mxClassIdFromClassName, mxComplexity,
mxCreateNumericArray

2-130

mxCreateSparse (C and Fortran)

Purpose Create 2-D unpopulated sparse mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateSparse(mwSize m, mwSize n, mwSize nzmax,

mxComplexity ComplexFlag);

Fortran
Syntax

mwPointer mxCreateSparse(m, n, nzmax, ComplexFlag)
mwSize m, n, nzmax
integer*4 ComplexFlag

Arguments m
The desired number of rows

n
The desired number of columns

nzmax
The number of elements that mxCreateSparse should allocate
to hold the pr, ir, and, if ComplexFlag is mxCOMPLEX in C (1 in
Fortran), pi arrays. Set the value of nzmax to be greater than or
equal to the number of nonzero elements you plan to put into the
mxArray, but make sure that nzmax is less than or equal to m*n.

ComplexFlag
If the mxArray you are creating is to contain imaginary data, set
ComplexFlag to mxCOMPLEX in C (1 in Fortran). Otherwise, set
ComplexFlag to mxREAL in C (0 in Fortran).

Returns A pointer to the created sparse double mxArray if successful, and NULL
in C (0 in Fortran) otherwise. The most likely reason for failure is
insufficient free heap space. If that happens, try reducing nzmax, m, or n.

Description Call mxCreateSparse to create an unpopulated sparse double mxArray.
The returned sparse mxArray contains no sparse information and
cannot be passed as an argument to any MATLAB sparse functions. To
make the returned sparse mxArray useful, you must initialize the pr,
ir, jc, and (if it exists) pi arrays.

2-131

mxCreateSparse (C and Fortran)

mxCreateSparse allocates space for

• A pr array of length nzmax.

• A pi array of length nzmax, but only if ComplexFlag is mxCOMPLEX
in C (1 in Fortran).

• An ir array of length nzmax.

• A jc array of length n+1.

When you finish using the sparse mxArray, call mxDestroyArray to
reclaim all its heap space.

C
Examples

See fulltosparse.c in the refbook subdirectory of the examples
directory.

See Also mxDestroyArray, mxSetNzmax, mxSetPr, mxSetPi, mxSetIr, mxSetJc,
mxComplexity

2-132

mxCreateSparseLogicalMatrix (C)

Purpose Create unpopulated 2-D, sparse, logical mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateSparseLogicalMatrix(mwSize m, mwSize n,

mwSize nzmax);

Arguments m
The desired number of rows

n
The desired number of columns

nzmax
The number of elements that mxCreateSparseLogicalMatrix
should allocate to hold the data. Set the value of nzmax to be
greater than or equal to the number of nonzero elements you plan
to put into the mxArray, but make sure that nzmax is less than or
equal to m*n.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a stand
alone (non-MEX-file) application, mxCreateSparseLogicalMatrix
returns NULL. If unsuccessful in a MEX-file, the MEX-file
terminates and control returns to the MATLAB prompt.
mxCreateSparseLogicalMatrix is unsuccessful when there is not
enough free heap space to create the mxArray.

Description Use mxCreateSparseLogicalMatrix to create an m-by-n mxArray of
mxLogical elements. mxCreateSparseLogicalMatrix initializes each
element in the array to logical 0.

Call mxDestroyArray when you finish using the mxArray.
mxDestroyArray deallocates the mxArray and its elements.

See Also mxCreateLogicalArray, mxCreateLogicalMatrix,
mxCreateLogicalScalar, mxCreateSparse, mxIsLogical

2-133

mxCreateString (C and Fortran)

Purpose Create 1-by-N string mxArray initialized to specified string

C Syntax #include "matrix.h"
mxArray *mxCreateString(const char *str);

Fortran
Syntax

mwPointer mxCreateString(str)
character*(*) str

Arguments str
The string that is to serve as the mxArray’s initial data

Returns A pointer to the created string mxArray if successful, and NULL in C (0
in Fortran) otherwise. The most likely cause of failure is insufficient
free heap space.

Description Use mxCreateString to create a string mxArray initialized to str.
Many MATLAB functions (for example, strcmp and upper) require
string array inputs.

Free the string mxArray when you are finished using it. To free a string
mxArray, call mxDestroyArray.

C
Examples

See revord.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatestructarray.c and mxisclass.c
in the mx subdirectory of the examples directory.

Fortran
Examples

See matdemo1.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxCreateCharMatrixFromStrings, mxCreateCharArray

2-134

mxCreateStructArray (C and Fortran)

Purpose Create unpopulated N-D structure mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateStructArray(mwSize ndim, const mwSize *dims,

int nfields, const char **fieldnames);

Fortran
Syntax

mwPointer mxCreateStructArray(ndim, dims, nfields,
fieldnames)

mwSize ndim, dims
integer*4 nfields
character*(*) fieldnames(nfields)

Arguments ndim
Number of dimensions. If you set ndim to be less than 2,
mxCreateStructArray creates a two-dimensional mxArray.

dims
The dimensions array. Each element in the dimensions array
contains the size of the array in that dimension. For example,
in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 mxArray. Typically, the dims array should
have ndim elements.

nfields
The desired number of fields in each element

fieldnames
The desired list of field names

Each structure field name must begin with a letter and is case
sensitive. The rest of the name may contain letters, numerals, and
underscore characters. Use the namelengthmax function to determine
the maximum length of a field name.

2-135

mxCreateStructArray (C and Fortran)

Returns A pointer to the created structure mxArray if successful, and NULL in C
(0 in Fortran) otherwise. The most likely cause of failure is insufficient
heap space to hold the returned mxArray.

Description Call mxCreateStructArray to create an unpopulated structure
mxArray. Each element of a structure mxArray contains the same
number of fields (specified in nfields). Each field has a name; the list
of names is specified in fieldnames. A MATLAB structure mxArray is
conceptually identical to an array of structs in the C language.

Each field holds one mxArray pointer. mxCreateStructArray
initializes each field to NULL in C (0 in Fortran). Call mxSetField or
mxSetFieldByNumber to place a non-NULL mxArray pointer in a field.

When you finish using the returned structure mxArray, call
mxDestroyArray to reclaim its space.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim
equals 5 and dims equals [4 1 7 1 1], the resulting array is given
the dimensions 4-by-1-by-7.

C
Examples

See mxcreatestructarray.c in the mx subdirectory of the examples
directory.

See Also mxDestroyArray, mxAddField, mxRemoveField, mxSetField,
mxSetFieldByNumber

2-136

mxCreateStructMatrix (C and Fortran)

Purpose Create unpopulated 2-D structure mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateStructMatrix(mwSize m, mwSize n, int nfields,

const char **fieldnames);

Fortran
Syntax

mwPointer mxCreateStructMatrix(m, n, nfields, fieldnames)
mwSize m, n
integer*4 nfields
character*(*) fieldnames(nfields)

Arguments m
The desired number of rows. This must be a positive integer.

n
The desired number of columns. This must be a positive integer.

nfields
The desired number of fields in each element.

fieldnames
The desired list of field names.

Each structure field name must begin with a letter and is case
sensitive. The rest of the name may contain letters, numerals, and
underscore characters. Use the namelengthmax function to determine
the maximum length of a field name.

Returns A pointer to the created structure mxArray if successful, and NULL in C
(0 in Fortran) otherwise. The most likely cause of failure is insufficient
heap space to hold the returned mxArray.

Description mxCreateStructMatrix and mxCreateStructArray are almost
identical. The only difference is that mxCreateStructMatrix can create
only two-dimensional mxArrays, while mxCreateStructArray can
create mxArrays having two or more dimensions.

2-137

mxCreateStructMatrix (C and Fortran)

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxCreateStructArray

2-138

mxDestroyArray (C and Fortran)

Purpose Free dynamic memory allocated by mxCreate* functions

C Syntax #include "matrix.h"
void mxDestroyArray(mxArray *pm);

Fortran
Syntax

mxDestroyArray(pm)
mwPointer pm

Arguments pm
Pointer to the mxArray you want to free

Description mxDestroyArray deallocates the memory occupied by the specified
mxArray. mxDestroyArray not only deallocates the memory occupied
by the mxArray’s characteristics fields (such as m and n), but also
deallocates all the mxArray’s associated data arrays, such as pr and
pi for complex arrays, ir and jc for sparse arrays, fields of structure
arrays, and cells of cell arrays. Do not call mxDestroyArray on an
mxArray you are returning on the left-hand side.

C
Examples

See sincall.c in the refbook subdirectory of the examples directory.

Additional examples:

• mexcallmatlab.c and mexgetarray.c in the mex subdirectory of the
examples directory

• mxisclass.c in the mx subdirectory of the examples directory

See Also mxCalloc, mxMalloc, mxFree, mexMakeArrayPersistent,
mexMakeMemoryPersistent

2-139

mxDuplicateArray (C and Fortran)

Purpose Make deep copy of array

C Syntax #include "matrix.h"
mxArray *mxDuplicateArray(const mxArray *in);

Fortran
Syntax

mwPointer mxDuplicateArray(in)
mwPointer in

Arguments in
Pointer to the mxArray you want to copy

Returns Pointer to a copy of the array.

Description mxDuplicateArray makes a deep copy of an array, and returns a
pointer to the copy. A deep copy refers to a copy in which all levels of
data are copied. For example, a deep copy of a cell array copies each cell
and the contents of each cell (if any), and so on.

C
Examples

See

• mexget.c in the mex subdirectory of the examples directory

• phonebook.c in the refbook subdirectory of the examples directory

For additional examples, see mxcreatecellmatrix.c, mxgetinf.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory.

2-140

mxFree (C and Fortran)

Purpose Free dynamic memory allocated by mxCalloc, mxMalloc, or mxRealloc

C Syntax #include "matrix.h"
void mxFree(void *ptr);

Fortran
Syntax

mxFree(ptr)
mwPointer ptr

Arguments ptr
Pointer to the beginning of any memory parcel allocated by
mxCalloc, mxMalloc, or mxRealloc.

Description mxFree deallocates heap space using the MATLAB memory
management facility. This ensures correct memory management in
error and abort (Ctrl+C) conditions.

To deallocate heap space, MATLAB applications in C should always call
mxFree rather than the ANSI C free function.

The memory management facility maintains a list of all memory
allocated by mxCalloc, mxMalloc, and mxRealloc. The memory
management facility automatically deallocates all of a MEX-file’s
managed parcels when the MEX-file completes and control returns to
the MATLAB prompt.

When mxFree appears in a stand alone MATLAB application, mxFree
simply deallocates the contiguous heap space that begins at address
ptr. In a MEX-file, mxFree also removes the memory parcel from the
memory management facility’s list of memory parcels.

In a MEX-file, your use of mxFree depends on whether the specified
memory parcel is persistent or nonpersistent. By default, memory
parcels created by mxCalloc, mxMalloc, and mxRealloc are
nonpersistent. The memory management facility automatically frees
all nonpersistent memory whenever a MEX-file completes. Thus, even
if you do not call mxFree, MATLAB takes care of freeing the memory
for you. Nevertheless, it is good programming practice to deallocate

2-141

mxFree (C and Fortran)

memory as soon as you are through using it. Doing so generally makes
the entire system run more efficiently.

If an application calls mexMakeMemoryPersistent, the specified
memory parcel becomes persistent. When a MEX-file completes, the
memory management facility does not free persistent memory parcels.
Therefore, the only way to free a persistent memory parcel is to call
mxFree. Typically, MEX-files call mexAtExit to register a cleanup
handler. The cleanup handler calls mxFree.

C
Examples

See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

Additional examples:

• phonebook.c in the refbook subdirectory of the examples directory

• explore.c and mexatexit.c in the mex subdirectory of the examples
directory

• mxcreatecharmatrixfromstr.c, mxisfinite.c, mxmalloc.c, and
mxsetdimensions.c in the mx subdirectory of the examples directory

See Also mexAtExit, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mxCalloc, mxDestroyArray, mxMalloc, mxRealloc

2-142

mxGetCell (C and Fortran)

Purpose Get contents of mxArray cell

C Syntax #include "matrix.h"
mxArray *mxGetCell(const mxArray *pm, mwIndex index);

Fortran
Syntax

mwPointer mxGetCell(pm, index)
mwPointer pm
mwIndex index

Arguments pm
Pointer to a cell mxArray

index
The number of elements in the cell mxArray between the first
element and the desired one. See mxCalcSingleSubscript for
details on calculating an index in a multidimensional cell array.

Returns A pointer to the ith cell mxArray if successful, and NULL in C (0 in
Fortran) otherwise. Causes of failure include

• Specifying the index of a cell array element that has not been
populated.

• Specifying a pm that does not point to a cell mxArray.

• Specifying an index greater than the number of elements in the cell.

• Insufficient free heap space to hold the returned cell mxArray.

Description Call mxGetCell to get a pointer to the mxArray held in the indexed
element of the cell mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should
not be modified. Using mxSetCell* or mxSetField* to modify the cells
or fields of a MATLAB argument causes unpredictable results.

2-143

mxGetCell (C and Fortran)

C
Examples

See explore.c in the mex subdirectory of the examples directory.

See Also mxCreateCellArray, mxIsCell, mxSetCell

2-144

mxGetChars (C)

Purpose Get pointer to character array data

C Syntax #include "matrix.h"
mxChar *mxGetChars(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray

Returns The address of the first character in the mxArray. Returns NULL if the
specified array is not a character array.

Description Call mxGetChars to determine the address of the first character in the
mxArray that array_ptr points to. Once you have the starting address,
you can access any other element in the mxArray.

See Also mxGetString

2-145

mxGetClassID (C and Fortran)

Purpose Get class of mxArray

C Syntax #include "matrix.h"
mxClassID mxGetClassID(const mxArray *pm);

Fortran
Syntax

integer*4 mxGetClassID(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns A numeric identifier of the class (category) of the mxArray that pm
points to. The C-language class identifiers are listed in the mxClassID
reference page.

Description Use mxGetClassId to determine the class of an mxArray. The class
of an mxArray identifies the kind of data the mxArray is holding. For
example, if pm points to a logical mxArray, then mxGetClassId returns
mxLOGICAL_CLASS (in C).

mxGetClassId is similar to mxGetClassName, except that the former
returns the class as an integer identifier and the latter returns the
class as a string.

C
Examples

See

• phonebook.c in the refbook subdirectory of the examples directory

• explore.c in the mex subdirectory of the examples directory

See Also mxClassID, mxGetClassName

2-146

mxGetClassName (C and Fortran)

Purpose Get class of mxArray as string

C Syntax #include "matrix.h"
const char *mxGetClassName(const mxArray *pm);

Fortran
Syntax

character*(*) mxGetClassName(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The class (as a string) of the mxArray pointed to by pm.

Description Call mxGetClassName to determine the class of an mxArray. The class
of an mxArray identifies the kind of data the mxArray is holding. For
example, if pm points to a logical mxArray, mxGetClassName returns
logical.

mxGetClassID is similar to mxGetClassName, except that the former
returns the class as an integer identifier, as listed in the mxClassID
reference page, and the latter returns the class as a string, as listed
in the mxIsClass reference page.

C
Examples

See mexfunction.c in the mex subdirectory of the examples directory.
For an additional example, see mxisclass.c in the mx subdirectory
of the examples directory.

See Also mxGetClassID, mxIsClass

2-147

mxGetData (C and Fortran)

Purpose Get pointer to data

C Syntax #include "matrix.h"
void *mxGetData(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetData(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The address of the first element of the real data. Returns NULL in C (0
in Fortran) if there is no real data.

Description Similar to mxGetPr, except that in C, mxGetData returns a void *.

To copy values from the returned pointer to Fortran, use one of the
mxCopyPtrTo* functions in the following manner:

C Get the data in mxArray, pm
mxCopyPtrToReal8(mxGetData(pm), data,

+ mxGetNumberOfElements(pm))

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatecharmatrixfromstr.c and
mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxGetImagData, mxGetPr

2-148

mxGetDimensions (C and Fortran)

Purpose Get pointer to dimensions array

C Syntax #include "matrix.h"
const mwSize *mxGetDimensions(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetDimensions(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray.

Returns The address of the first element in the dimensions array. Each integer
in the dimensions array represents the number of elements in a
particular dimension. The array is not NULL terminated.

Description Use mxGetDimensions to determine how many elements are
in each dimension of the mxArray that pm points to. Call
mxGetNumberOfDimensions to get the number of dimensions in the
mxArray.

To copy the values to Fortran, use mxCopyPtrToInteger4 in the
following manner:

C Get dimensions of mxArray, pm
mxCopyPtrToInteger4(mxGetDimensions(pm), dims,

+ mxGetNumberOfDimensions(pm))

C
Examples

See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

Additional examples:

• findnz.c and phonebook.c in the refbook subdirectory of the
examples directory

• explore.c in the mex subdirectory of the examples directory

2-149

mxGetDimensions (C and Fortran)

• mxgeteps.c and mxisfinite.c in the mx subdirectory of the
examples directory

See Also mxGetNumberOfDimensions

2-150

mxGetElementSize (C and Fortran)

Purpose Get number of bytes required to store each data element

C Syntax #include "matrix.h"
mwSize mxGetElementSize(const mxArray *pm);

Fortran
Syntax

mwSize mxGetElementSize(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The number of bytes required to store one element of the specified
mxArray, if successful. Returns 0 on failure. The primary reason for
failure is that pm points to an mxArray having an unrecognized class. If
pm points to a cell mxArray or a structure mxArray, mxGetElementSize
returns the size of a pointer (not the size of all the elements in each
cell or structure field).

Description Call mxGetElementSize to determine the number of bytes in each data
element of the mxArray. For example, if the MATLAB class of an
mxArray is int16, the mxArray stores each data element as a 16-bit
(2-byte) signed integer. Thus, mxGetElementSize returns 2.

mxGetElementSize is particularly helpful when using a non-MATLAB
routine to manipulate data elements. For example, the C function
memcpy requires (for its third argument) the size of the elements you
intend to copy.

C
Examples

See doubleelement.c and phonebook.c in the refbook subdirectory
of the examples directory.

See Also mxGetM, mxGetN

2-151

mxGetEps (C and Fortran)

Purpose Get value of eps

C Syntax #include "matrix.h"
double mxGetEps(void);

Fortran
Syntax

real*8 mxGetEps

Returns The value of the MATLAB eps variable

Description Call mxGetEps to return the value of the MATLAB eps variable. This
variable holds the distance from 1.0 to the next largest floating-point
number. As such, it is a measure of floating-point accuracy. The
MATLAB pinv and rank functions use eps as a default tolerance.

C
Examples

See mxgeteps.c in the mx subdirectory of the examples directory.

See Also mxGetInf, mxGetNan

2-152

mxGetField (C and Fortran)

Purpose Get field value, given field name and index into structure array

C Syntax #include "matrix.h"
mxArray *mxGetField(const mxArray *pm, mwIndex index,

const char *fieldname);

Fortran
Syntax

mwPointer mxGetField(pm, index, fieldname)
mwPointer pm
mwIndex index
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray

index
Index of the desired element.

In C, the first element of an mxArray has an index of 0, the second
element has an index of 1, and the last element has an index of
N-1, where N is the total number of elements in the mxArray.

In Fortran, the first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an
index of N, where N is the total number of elements in the mxArray.

fieldname
The name of the field whose value you want to extract.

Returns A pointer to the mxArray in the specified field at the specified
fieldname, on success. Returns NULL in C (0 in Fortran) if passed an
invalid argument or if there is no value assigned to the specified field.
Common causes of failure include:

• Specifying an array pointer pm that does not point to a structure
mxArray. To determine whether pm points to a structure mxArray,
call mxIsStruct.

2-153

mxGetField (C and Fortran)

• Specifying an index to an element outside the bounds of the mxArray.
For example, given a structure mxArray that contains 10 elements,
you cannot specify an index greater than 9 in C (10 in Fortran).

• Specifying a nonexistent fieldname. Call mxGetFieldNameByNumber
or mxGetFieldNumber to get existing field names.

• Insufficient heap space to hold the returned mxArray.

Description Call mxGetField to get the value held in the specified element of the
specified field. In pseudo-C terminology, mxGetField returns the value
at:

pm[index].fieldname

mxGetFieldByNumber is similar to mxGetField. Both functions return
the same value. The only difference is in the way you specify the field.
mxGetFieldByNumber takes a field number as its third argument, and
mxGetField takes a field name as its third argument.

Note Inputs to a MEX-file are constant read-only mxArrays and should
not be modified. Using mxSetCell* or mxSetField* to modify the cells
or fields of a MATLAB argument causes unpredictable results.

In C, calling:

mxGetField(pa, index, "field_name");

is equivalent to calling:

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is 0 if you have a 1-by-1 structure.

In Fortran, calling:

mxGetField(pm, index, 'fieldname')

2-154

mxGetField (C and Fortran)

is equivalent to calling:

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxGetFieldByNumber(pm, index, fieldnum)

where index is 1 if you have a 1-by-1 structure.

See Also mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber

2-155

mxGetFieldByNumber (C and Fortran)

Purpose Get field value, given field number and index into structure array

C Syntax #include "matrix.h"
mxArray *mxGetFieldByNumber(const mxArray *pm, mwIndex index,

int fieldnumber);

Fortran
Syntax

mwPointer mxGetFieldByNumber(pm, index, fieldnumber)
mwPointer pm
mwIndex index
integer*4 fieldnumber

Arguments pm
Pointer to a structure mxArray

index
Index of the desired element.

In C, the first element of an mxArray has an index of 0, the second
element has an index of 1, and the last element has an index of
N-1, where N is the total number of elements in the mxArray.

In Fortran, the first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an
index of N, where N is the total number of elements in the mxArray.

See mxCalcSingleSubscript for more details on calculating an
index.

fieldnumber
The position of the field whose value you want to extract

In C, the first field within each element has a field number of 0,
the second field has a field number of 1, and so on. The last field
has a field number of N-1, where N is the number of fields.

2-156

mxGetFieldByNumber (C and Fortran)

In Fortran, the first field within each element has a field number
of 1, the second field has a field number of 2, and so on. The last
field has a field number of N, where N is the number of fields.

Returns A pointer to the mxArray in the specified field for the desired element,
on success. Returns NULL in C (0 in Fortran) if passed an invalid
argument or if there is no value assigned to the specified field. Common
causes of failure include:

• Specifying an array pointer pm that does not point to a structure
mxArray. Call mxIsStruct to determine whether pm points to a
structure mxArray.

• Specifying an index to an element outside the bounds of the mxArray.
For example, given a structure mxArray that contains 10 elements,
you cannot specify an index greater than 9 in C (10 in Fortran).

• Specifying a nonexistent field number. Call mxGetFieldNumber to
determine the field number that corresponds to a given field name.

Description Call mxGetFieldByNumber to get the value held in the specified
fieldnumber at the indexed element.

Note Inputs to a MEX-file are constant read-only mxArrays and should
not be modified. Using mxSetCell* or mxSetField* to modify the cells
or fields of a MATLAB argument causes unpredictable results.

In C, calling:

mxGetField(pa, index, "field_name");

is equivalent to calling:

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

2-157

mxGetFieldByNumber (C and Fortran)

where index is 0 if you have a 1-by-1 structure.

In Fortran, calling:

mxGetField(pm, index, 'fieldname')

is equivalent to calling:

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxGetFieldByNumber(pm, index, fieldnum)

where index is 1 if you have a 1-by-1 structure.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

Additional examples:

• mxisclass.c in the mx subdirectory of the examples directory

• explore.c in the mex subdirectory of the examples directory

See Also mxGetField, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber

2-158

mxGetFieldNameByNumber (C and Fortran)

Purpose Get field name, given field number in structure array

C Syntax #include "matrix.h"
const char *mxGetFieldNameByNumber(const mxArray *pm,

int fieldnumber);

Fortran
Syntax

character*(*) mxGetFieldNameByNumber(pm, fieldnumber)
mwPointer pm
integer*4 fieldnumber

Arguments pm
Pointer to a structure mxArray

fieldnumber
The position of the desired field. For instance, in C, to get the
name of the first field, set fieldnumber to 0; to get the name of
the second field, set fieldnumber to 1; and so on. In Fortran, to
get the name of the first field, set fieldnumber to 1; to get the
name of the second field, set fieldnumber to 2; and so on.

Returns A pointer to the nth field name, on success. Returns NULL in C (0 in
Fortran) on failure. Common causes of failure include

• Specifying an array pointer pm that does not point to a structure
mxArray. Call mxIsStruct to determine whether pm points to a
structure mxArray.

• Specifying a value of fieldnumber outside the bounds of the
number of fields in the structure mxArray. In C, fieldnumber 0
represents the first field, and fieldnumber N-1 represents the last
field, where N is the number of fields in the structure mxArray. In
Fortran, fieldnumber 1 represents the first field, and fieldnumber N
represents the last field.

Description Call mxGetFieldNameByNumber to get the name of a field in the given
structure mxArray. A typical use of mxGetFieldNameByNumber is to

2-159

mxGetFieldNameByNumber (C and Fortran)

call it inside a loop in order to get the names of all the fields in a given
mxArray.

Consider a MATLAB structure initialized to:

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

In C, the field number 0 represents the field name; field number 1
represents field billing; field number 2 represents field test. A field
number other than 0, 1, or 2 causes mxGetFieldNameByNumber to return
NULL.

In Fortran, the field number 1 represents the field name; field number
2 represents field billing; field number 3 represents field test. A
field number other than 1, 2, or 3 causes mxGetFieldNameByNumber
to return 0.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

Additional examples:

• mxisclass.c in the mx subdirectory of the examples directory

• explore.c in the mex subdirectory of the examples directory

See Also mxGetField, mxGetFieldByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber

2-160

mxGetFieldNumber (C and Fortran)

Purpose Get field number, given field name in structure array

C Syntax #include "matrix.h"
int mxGetFieldNumber(const mxArray *pm,

const char *fieldname);

Fortran
Syntax

integer*4 mxGetFieldNumber(pm, fieldname)
mwPointer pm
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray.

fieldname
The name of a field in the structure mxArray.

Returns The field number of the specified fieldname, on success. In C, the first
field has a field number of 0, the second field has a field number of 1,
and so on. In Fortran, the first field has a field number of 1, the second
field has a field number of 2, and so on. Returns -1 in C (0 in Fortran)
on failure. Common causes of failure include

• Specifying an array pointer pm that does not point to a structure
mxArray. Call mxIsStruct to determine whether pm points to a
structure mxArray.

• Specifying the fieldname of a nonexistent field.

Description If you know the name of a field but do not know its field number, call
mxGetFieldNumber. Conversely, if you know the field number but do
not know its field name, call mxGetFieldNameByNumber.

For example, consider a MATLAB structure initialized to:

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

2-161

mxGetFieldNumber (C and Fortran)

In C, the field name has a field number of 0; the field billing has a
field number of 1; and the field test has a field number of 2. If you call
mxGetFieldNumber and specify a field name of anything other than
name, billing, or test, mxGetFieldNumber returns -1.

Calling:

mxGetField(pa, index, "field_name");

is equivalent to calling:

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is 0 if you have a 1-by-1 structure.

In Fortran, the field name has a field number of 1; the field billing has
a field number of 2; and the field test has a field number of 3. If you
call mxGetFieldNumber and specify a field name of anything other than
name, billing, or test, mxGetFieldNumber returns 0.

Calling:

mxGetField(pm, index, 'fieldname');

is equivalent to calling:

fieldnum = mxGetFieldNumber(pm, 'fieldname');
mxGetFieldByNumber(pm, index, fieldnum);

where index is 1 if you have a 1-by-1 structure.

C
Examples

See mxcreatestructarray.c in the mx subdirectory of the examples
directory.

See Also mxGetField, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber

2-162

mxGetImagData (C and Fortran)

Purpose Get pointer to imaginary data of mxArray

C Syntax #include "matrix.h"
void *mxGetImagData(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetImagData(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The address of the first element of the imaginary data, on success.
Returns NULL in C (0 in Fortran) if there is no imaginary data or if
there is an error.

Description This function is similar to mxGetPi, except that in C it returns a void *.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxGetData, mxGetPi

2-163

mxGetInf (C and Fortran)

Purpose Get value of infinity

C Syntax #include "matrix.h"
double mxGetInf(void);

Fortran
Syntax

real*8 mxGetInf

Returns The value of infinity on your system.

Description Call mxGetInf to return the value of the MATLAB internal inf variable.
inf is a permanent variable representing IEEE® arithmetic positive
infinity. The value of inf is built into the system; you cannot modify it.

Operations that return infinity include

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns
infinity because the result is too large to be represented on your
machine.

C
Examples

See mxgetinf.c in the mx subdirectory of the examples directory.

See Also mxGetEps, mxGetNaN

2-164

mxGetIr (C and Fortran)

Purpose Get ir array of sparse matrix

C Syntax #include "matrix.h"
mwIndex *mxGetIr(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetIr(pm)
mwPointer pm

Arguments pm
Pointer to a sparse mxArray

Returns A pointer to the first element in the ir array, if successful, and NULL in
C (0 in Fortran) otherwise. Possible causes of failure include

• Specifying a full (nonsparse) mxArray.

• Specifying a value for pm that is NULL in C (0 in Fortran). This usually
means that an earlier call to mxCreateSparse failed.

Description Use mxGetIr to obtain the starting address of the ir array. The ir
array is an array of integers; the length of the ir array is typically
nzmax values. For example, if nzmax equals 100, the ir array should
contain 100 integers.

Each value in an ir array indicates a row (offset by 1) at which a
nonzero element can be found. (The jc array is an index that indirectly
specifies a column where nonzero elements can be found.)

For details on the ir and jc arrays, see mxSetIr and mxSetJc.

C
Examples

See fulltosparse.c in the refbook subdirectory of the examples
directory.

Additional examples:

• explore.c in the mex subdirectory of the examples directory

2-165

mxGetIr (C and Fortran)

• mxsetdimensions.c and mxsetnzmax.c in the mx subdirectory of the
examples directory

See Also mxGetJc, mxGetNzmax, mxSetIr, mxSetJc, mxSetNzmax

2-166

mxGetJc (C and Fortran)

Purpose Get jc array of sparse matrix

C Syntax #include "matrix.h"
mwIndex *mxGetJc(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetJc(pm)
mwPointer pm

Arguments pm
Pointer to a sparse mxArray

Returns A pointer to the first element in the jc array, if successful, and NULL in
C (0 in Fortran) otherwise. Possible causes of failure include

• Specifying a full (nonsparse) mxArray.

• Specifying a value for pm that is NULL in C (0 in Fortran). This usually
means that an earlier call to mxCreateSparse failed.

Description Use mxGetJc to obtain the starting address of the jc array. The
jc array is an integer array having n+1 elements, where n is the
number of columns in the sparse mxArray. The values in the jc array
indirectly indicate columns containing nonzero elements. For a detailed
explanation of the jc array, see mxSetJc.

C
Examples

See fulltosparse.c in the refbook subdirectory of the examples
directory.

Additional examples:

• explore.c in the mex subdirectory of the examples directory

• mxgetnzmax.c, mxsetdimensions.c, and mxsetnzmax.c in the mx
subdirectory of the examples directory

See Also mxGetIr, mxGetNzmax, mxSetIr, mxSetJc, mxSetNzmax

2-167

mxGetLogicals (C)

Purpose Get pointer to logical array data

C Syntax #include "matrix.h"
mxLogical *mxGetLogicals(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray

Returns The address of the first logical element in the mxArray. The result is
unspecified if the mxArray is not a logical array.

Description Call mxGetLogicals to determine the address of the first logical element
in the mxArray that array_ptr points to. Once you have the starting
address, you can access any other element in the mxArray.

See Also mxCreateLogicalArray, mxCreateLogicalMatrix,
mxCreateLogicalScalar, mxIsLogical, mxIsLogicalScalar,
mxIsLogicalScalarTrue

2-168

mxGetM (C and Fortran)

Purpose Get number of rows in mxArray

C Syntax #include "matrix.h"
size_t mxGetM(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetM(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The number of rows in the mxArray to which pm points.

Description mxGetM returns the number of rows in the specified array. The term
rows always means the first dimension of the array, no matter how
many dimensions the array has. For example, if pm points to a
four-dimensional array having dimensions 8-by-9-by-5-by-3, mxGetM
returns 8.

Note Fortran does not have an equivalent of size_t. mwPointer is a
preprocessor macro that provides the appropriate Fortran type. The
value returned by this function, however, is not a pointer.

C
Examples

See convec.c in the refbook subdirectory of the examples directory.

Additional examples:

• fulltosparse.c, revord.c, timestwo.c, and xtimesy.c in the
refbook subdirectory of the examples directory

• explore.c, mexget.c, mexlock.c, mexsettrapflag.c and yprime.c
in the mex subdirectory of the examples directory

• mxmalloc.c, mxsetdimensions.c, mxgetnzmax.c, and mxsetnzmax.c
in the mx subdirectory of the examples directory

2-169

mxGetM (C and Fortran)

Fortran
Examples

See matdemo2.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxGetN, mxSetM, mxSetN

2-170

mxGetN (C and Fortran)

Purpose Get number of columns in mxArray

C Syntax #include "matrix.h"
size_t mxGetN(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetN(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The number of columns in the mxArray.

Description Call mxGetN to determine the number of columns in the specified
mxArray.

If pm is an N-dimensional mxArray, mxGetN is the product of dimensions
2 through N. For example, if pm points to a four-dimensional mxArray
having dimensions 13-by-5-by-4-by-6, mxGetN returns the value 120 (5 ×
4 × 6). If the specified mxArray has more than two dimensions and you
need to know exactly how many elements are in each dimension, call
mxGetDimensions.

If pm points to a sparse mxArray, mxGetN still returns the number of
columns, not the number of occupied columns.

Note Fortran does not have an equivalent of size_t. mwPointer is a
preprocessor macro that provides the appropriate Fortran type. The
value returned by this function, however, is not a pointer.

C
Examples

See convec.c in the refbook subdirectory of the examples directory.

Additional examples:

2-171

mxGetN (C and Fortran)

• fulltosparse.c, revord.c, timestwo.c, and xtimesy.c in the
refbook subdirectory of the examples directory

• explore.c, mexget.c, mexlock.c, mexsettrapflag.c and yprime.c
in the mex subdirectory of the examples directory

• mxmalloc.c, mxsetdimensions.c, mxgetnzmax.c, and mxsetnzmax.c
in the mx subdirectory of the examples directory

Fortran
Examples

See matdemo2.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxGetM, mxGetDimensions, mxSetM, mxSetN

2-172

mxGetNaN (C and Fortran)

Purpose Get value of NaN (Not-a-Number)

C Syntax #include "matrix.h"
double mxGetNaN(void);

Fortran
Syntax

real*8 mxGetNaN

Returns The value of NaN (Not-a-Number) on your system

Description Call mxGetNaN to return the value of NaN for your system. NaN is
the IEEE arithmetic representation for Not-a-Number. Certain
mathematical operations return NaN as a result, for example,

• 0.0/0.0

• Inf-Inf

The value of Not-a-Number is built in to the system. You cannot modify
it.

C
Examples

See mxgetinf.c in the mx subdirectory of the examples directory.

See Also mxGetEps, mxGetInf

2-173

mxGetNumberOfDimensions (C and Fortran)

Purpose Get number of dimensions in mxArray

C Syntax #include "matrix.h"
mwSize mxGetNumberOfDimensions(const mxArray *pm);

Fortran
Syntax

mwSize mxGetNumberOfDimensions(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The number of dimensions in the specified mxArray. The returned value
is always 2 or greater.

Description Use mxGetNumberOfDimensions to determine how many dimensions are
in the specified array. To determine how many elements are in each
dimension, call mxGetDimensions.

C
Examples

See explore.c in the mex subdirectory of the examples directory.

Additional examples:

• findnz.c, fulltosparse.c, and phonebook.c in the refbook
subdirectory of the examples directory

• mxcalcsinglesubscript.c, mxgeteps.c, and mxisfinite.c in the
mx subdirectory of the examples directory.

See Also mxSetM, mxSetN, mxGetDimensions

2-174

mxGetNumberOfElements (C and Fortran)

Purpose Get number of elements in mxArray

C Syntax #include "matrix.h"
mwSize mxGetNumberOfElements(const mxArray *pm);

Fortran
Syntax

mwSize mxGetNumberOfElements(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Number of elements in the specified mxArray

Description mxGetNumberOfElements tells you how many elements an array
has. For example, if the dimensions of an array are 3-by-5-by-10,
mxGetNumberOfElements returns the number 150.

C
Examples

See findnz.c and phonebook.c in the refbook subdirectory of the
examples directory.

Additional examples:

• explore.c in the mex subdirectory of the examples directory

• mxcalcsinglesubscript.c, mxgeteps.c, mxgetinf.c,
mxisfinite.c, and mxsetdimensions.c in the mx subdirectory of the
examples directory

See Also mxGetDimensions, mxGetM, mxGetN, mxGetClassID, mxGetClassName

2-175

mxGetNumberOfFields (C and Fortran)

Purpose Get number of fields in structure mxArray

C Syntax #include "matrix.h"
int mxGetNumberOfFields(const mxArray *pm);

Fortran
Syntax

integer*4 mxGetNumberOfFields(pm)
mwPointer pm

Arguments pm
Pointer to a structure mxArray

Returns The number of fields, on success. Returns 0 on failure. The most
common cause of failure is that pm is not a structure mxArray. Call
mxIsStruct to determine whether pm is a structure.

Description Call mxGetNumberOfFields to determine how many fields are in the
specified structure mxArray.

Once you know the number of fields in a structure, you can loop through
every field in order to set or to get field values.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

Additional examples:

• mxisclass.c in the mx subdirectory of the examples directory

• explore.c in the mex subdirectory of the examples directory.

See Also mxGetField, mxIsStruct, mxSetField

2-176

mxGetNzmax (C and Fortran)

Purpose Get number of elements in ir, pr, and pi arrays

C Syntax #include "matrix.h"
mwSize mxGetNzmax(const mxArray *pm);

Fortran
Syntax

mwSize mxGetNzmax(pm)
mwPointer pm

Arguments pm
Pointer to a sparse mxArray

Returns The number of elements allocated to hold nonzero entries in the
specified sparse mxArray, on success. Returns an indeterminate value
on error. The most likely cause of failure is that pm points to a full
(nonsparse) mxArray.

Description Use mxGetNzmax to get the value of the nzmax field. The nzmax field
holds an integer value that signifies the number of elements in the
ir, pr, and, if it exists, the pi arrays. The value of nzmax is always
greater than or equal to the number of nonzero elements in a sparse
mxArray. In addition, the value of nzmax is always less than or equal to
the number of rows times the number of columns.

As you adjust the number of nonzero elements in a sparse mxArray,
MATLAB software often adjusts the value of the nzmax field. MATLAB
adjusts nzmax in order to reduce the number of costly reallocations and
in order to optimize its use of heap space.

C
Examples

See mxgetnzmax.c and mxsetnzmax.c in the mx subdirectory of the
examples directory.

See Also mxSetNzmax

2-177

mxGetPi (C and Fortran)

Purpose Get imaginary data elements in mxArray

C Syntax #include "matrix.h"
double *mxGetPi(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetPi(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The imaginary data elements of the specified mxArray, on success.
Returns NULL in C (0 in Fortran) if there is no imaginary data or if
there is an error.

Description The pi field points to an array containing the imaginary data of the
mxArray. Call mxGetPi to get the contents of the pi field, that is, to get
the starting address of this imaginary data.

The best way to determine whether an mxArray is purely real is to call
mxIsComplex.

The imaginary parts of all input matrices to a MATLAB function are
allocated if any of the input matrices are complex.

C
Examples

See convec.c, findnz.c, and fulltosparse.c in the refbook
subdirectory of the examples directory.

Additional examples:

• explore.c and mexcallmatlab.c in the mex subdirectory of the
examples directory

• mxcalcsinglesubscript.c, mxgetinf.c, mxisfinite.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory

See Also mxGetPr, mxSetPi, mxSetPr

2-178

mxGetPr (C and Fortran)

Purpose Get real data elements in mxArray

C Syntax #include "matrix.h"
double *mxGetPr(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetPr(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The address of the first element of the real data. Returns NULL in C (0
in Fortran) if there is no real data.

Description Call mxGetPr to determine the starting address of the real data in the
mxArray that pm points to. Once you have the starting address, you can
access any other element in the mxArray.

C
Examples

See convec.c, doubleelement.c, findnz.c, fulltosparse.c,
sincall.c, timestwo.c, timestwoalt.c, and xtimesy.c in the
refbook subdirectory of the examples directory.

See Also mxGetPi, mxSetPi, mxSetPr

2-179

mxGetProperty (C and Fortran)

Purpose Get property value of MATLAB class object

C Syntax #include "matrix.h"
mxArray *mxGetProperty(const mxArray *pa, mwIndex index,

const char *propname);

Fortran
Syntax

mwPointer mxGetProperty(pa, index, propname)
mwPointer pa
mwIndex index
character*(*) propname

Arguments pa
Pointer to an mxArray which is a class object.

index
Index of the desired element of the object array.

In C, the first element of an mxArray has an index of 0, the second
element has an index of 1, and the last element has an index of
N-1, where N is the total number of elements in the mxArray.

In Fortran, the first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an
index of N, where N is the total number of elements in the mxArray.

propname
Name of the property whose value you want to extract.

Returns A pointer to the mxArray of the specified propname on success.

Common causes of failure include:

• Specifying an index to an element outside the bounds of the mxArray.
Use mxGetNumberOfElements or mxGetM and mxGetN to test the index
value.

• Specifying a nonexistent propname.

2-180

mxGetProperty (C and Fortran)

• Specifying a propname with an attribute setting that restricts access
to its value.

• Insufficient memory (in the heap) to hold the returned mxArray.

Description Call mxGetProperty to get the value held in the specified element. In
pseudo-C terminology, mxGetProperty returns the value at:

pa[index].propname

See Also mxSetProperty, mxGetNumberOfElements, mxGetM, mxGetN

2-181

mxGetScalar (C and Fortran)

Purpose Get real component of first data element in mxArray

C Syntax #include "matrix.h"
double mxGetScalar(const mxArray *pm);

Fortran
Syntax

real*8 mxGetScalar(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray; cannot be a cell mxArray, a structure
mxArray, or an empty mxArray.

Returns The value of the first real (nonimaginary) element of the mxArray.
Notice that in C, mxGetScalar returns a double. Therefore, if real
elements in the mxArray are stored as something other than double,
mxGetScalar automatically converts the scalar value into a double. To
preserve the original data representation of the scalar, you must cast
the return value to the desired data type.

mxGetScalar should only be called when pm points to a nonempty
numeric, logical, or char mxArray. Use mx functions such as mxIsEmpty,
mxIsLogical, mxIsNumeric, or mxIsChar to test for this condition before
calling mxGetScalar.

If pm points to a sparse mxArray, mxGetScalar returns the value of the
first nonzero real element in the mxArray.

Description Call mxGetScalar to get the value of the first real (nonimaginary)
element of the mxArray.

In most cases, you call mxGetScalar when pm points to an mxArray
containing only one element (a scalar). However, pm can point to
an mxArray containing many elements. If pm points to an mxArray
containing multiple elements, mxGetScalar returns the value of
the first real element. If pm points to a two-dimensional mxArray,
mxGetScalar returns the value of the (1,1) element; if pm points to

2-182

mxGetScalar (C and Fortran)

a three-dimensional mxArray, mxGetScalar returns the value of the
(1,1,1) element; and so on.

C
Examples

See timestwoalt.c and xtimesy.c in the refbook subdirectory of the
examples directory.

Additional examples:

• mxsetdimensions.c in the mx subdirectory of the examples directory

• mexlock.c and mexsettrapflag.c in the mex subdirectory of the
examples directory

See Also mxGetM, mxGetN

2-183

mxGetString (C and Fortran)

Purpose Copy string mxArray to C-style string

C Syntax #include "matrix.h"
int mxGetString(const mxArray *pm, char *str, mwSize strlen);

Fortran
Syntax

integer*4 mxGetString(pm, str, strlen)
mwPointer pm
character*(*) str
mwSize strlen

Arguments pm
Pointer to a string mxArray; that is, a pointer to an mxArray
having the mxCHAR_CLASS class.

str
The starting location into which the string should be written.
mxGetString writes the character data into str and then, in C,
terminates the string with a NULL character (in the manner of C
strings). str can point to either dynamic or static memory.

strlen
Maximum number of characters to read into str. Typically, in C,
you set strlen to 1 plus the number of elements in the string
mxArray to which pm points. See the mxGetM and mxGetN reference
pages to find out how to get the number of elements.

Returns 0 on success, and 1 on failure. Possible reasons for failure include

• Specifying an mxArray that is not a string mxArray.

• Specifying strlen with less than the number of characters needed
to store the entire mxArray pointed to by pm. If this is the case, 1 is
returned and the string is truncated.

Description Call mxGetString to copy the character data of a string mxArray into a
C-style string in C or a character array in Fortran. The copied string
starts at str and contains no more than strlen-1 characters in C (no

2-184

mxGetString (C and Fortran)

more than strlen characters in Fortran). In C, the C-style string is
always terminated with a NULL character.

If the string array contains several rows, they are copied—one column
at a time—into one long string array.

Multibyte Character Sets

This function is for use only with strings that represent single-byte
character sets. For strings that represent multibyte character sets, use
the C function mxArrayToString. Fortran users must allocate sufficient
space for the return string to avoid possible truncation.

strlen = (mxGetM(prhs[0]) * mxGetN(prhs[0]) * sizeof(mxChar)) + 1

C
Examples

Examples:

• explore.c in the mex subdirectory of the examples directory

• mxmalloc.c in the mx subdirectory of the examples directory

See Also mxArrayToString, mxCreateCharArray,
mxCreateCharMatrixFromStrings, mxCreateString

2-185

mxIsCell (C and Fortran)

Purpose Determine whether input is cell mxArray

C Syntax #include "matrix.h"
bool mxIsCell(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsCell(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if pm points to an array having the class mxCELL_CLASS,
and logical 0 (false) otherwise.

Description Use mxIsCell to determine whether the specified array is a cell array.

In C, calling mxIsCell is equivalent to calling:

mxGetClassID(pm) == mxCELL_CLASS

In Fortran, calling mxIsCell is equivalent to calling:

mxGetClassName(pm) .eq. 'cell'

Note mxIsCell does not answer the question “Is this mxArray a cell of a
cell array?” An individual cell of a cell array can be of any type.

See Also mxIsClass

2-186

mxIsChar (C and Fortran)

Purpose Determine whether input is string mxArray

C Syntax #include "matrix.h"
bool mxIsChar(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsChar(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if pm points to an array having the class mxCHAR_CLASS,
and logical 0 (false) otherwise.

Description Use mxIsChar to determine whether pm points to string mxArray.

In C, calling mxIsChar is equivalent to calling:

mxGetClassID(pm) == mxCHAR_CLASS

In Fortran, calling mxIsChar is equivalent to calling:

mxGetClassName(pm) .eq. 'char'

C
Examples

See phonebook.c and revord.c in the refbook subdirectory of the
examples directory.

For additional examples, see mxcreatecharmatrixfromstr.c,
mxislogical.c, and mxmalloc.c in the mx subdirectory of the examples
directory.

See Also mxIsClass, mxGetClassID

2-187

mxIsClass (C and Fortran)

Purpose Determine whether mxArray is member of specified class

C Syntax #include "matrix.h"
bool mxIsClass(const mxArray *pm, const char *classname);

Fortran
Syntax

integer*4 mxIsClass(pm, classname)
mwPointer pm
character*(*) classname

Arguments pm
Pointer to an mxArray

classname
The array category that you are testing. Specify classname as a
string (not as an integer identifier). You can specify any one of the
following predefined constants:

Value of
classname Corresponding Class

cell mxCELL_CLASS

char mxCHAR_CLASS

double mxDOUBLE_CLASS

function_handle mxFUNCTION_CLASS

int8 mxINT8_CLASS

int16 mxINT16_CLASS

int32 mxINT32_CLASS

int64 mxINT64_CLASS

logical mxLOGICAL_CLASS

single mxSINGLE_CLASS

struct mxSTRUCT_CLASS

uint8 mxUINT8_CLASS

2-188

mxIsClass (C and Fortran)

Value of
classname Corresponding Class

uint16 mxUINT16_CLASS

uint32 mxUINT32_CLASS

uint64 mxUINT64_CLASS

<class_name> <class_id>

unknown mxUNKNOWN_CLASS

In the table, <class_name> represents the name of a specific MATLAB
custom object. You can also specify one of your own class names.

Returns Logical 1 (true) if pm points to an array having category classname,
and logical 0 (false) otherwise.

Description Each mxArray is tagged as being a certain type. Call mxIsClass to
determine whether the specified mxArray has this type.

In C:

mxIsClass(pm, "double");

is equivalent to calling either of these forms:

mxIsDouble(pm);

strcmp(mxGetClassName(pm), "double");

In Fortran:

mxIsClass(pm, 'double')

is equivalent to calling either one of the following:

mxIsDouble(pm)

mxGetClassName(pm) .eq. 'double'

2-189

mxIsClass (C and Fortran)

It is most efficient to use the mxIsDouble form.

C
Examples

See mxisclass.c in the mx subdirectory of the examples directory.

See Also mxClassID, mxGetClassID, mxIsEmpty, mxGetClassName

2-190

mxIsComplex (C and Fortran)

Purpose Determine whether data is complex

C Syntax #include "matrix.h"
bool mxIsComplex(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsComplex(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if pm is a numeric array containing complex data, and
logical 0 (false) otherwise. If pm points to a cell array or a structure
array, mxIsComplex returns false.

Description Use mxIsComplex to determine whether or not an imaginary part is
allocated for an mxArray. The imaginary pointer pi is NULL in C (0 in
Fortran) if an mxArray is purely real and does not have any imaginary
data. If an mxArray is complex, pi points to an array of numbers.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

Additional examples:

• convec.c, phonebook.c, timestwo.c, and xtimesy.c in the refbook
subdirectory of the examples directory

• explore.c, yprime.c, mexlock.c, and mexsettrapflag.c in the mex
subdirectory of the examples directory

• mxcalcsinglesubscript.c, mxgeteps.c, and mxgetinf.c in the mx
subdirectory of the examples directory

See Also mxIsNumeric

2-191

mxIsDouble (C and Fortran)

Purpose Determine whether mxArray represents data as double-precision,
floating-point numbers

C Syntax #include "matrix.h"
bool mxIsDouble(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsDouble(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray stores its data as double-precision,
floating-point numbers, and logical 0 (false) otherwise.

Description Call mxIsDouble to determine whether or not the specified mxArray
represents its real and imaginary data as double-precision,
floating-point numbers.

Older versions of MATLAB software store all mxArray data as
double-precision, floating-point numbers. However, starting with
MATLAB Version 5 software, MATLAB can store real and imaginary
data in a variety of numerical formats.

In C, calling mxIsDouble is equivalent to calling:

mxGetClassID(pm) == mxDOUBLE_CLASS

In Fortran, calling mxIsDouble is equivalent to calling:

mxGetClassName(pm) .eq. 'double'

C
Examples

See findnz.c, fulltosparse.c, timestwo.c, and xtimesy.c in the
refbook subdirectory of the examples directory.

Additional examples:

2-192

mxIsDouble (C and Fortran)

• mexget.c, mexlock.c, mexsettrapflag.c, and yprime.c in the mex
subdirectory of the examples directory

• mxcalcsinglesubscript.c, mxgeteps.c, mxgetinf.c, and
mxisfinite.c in the mx subdirectory of the examples directory

See Also mxIsClass, mxGetClassID

2-193

mxIsEmpty (C and Fortran)

Purpose Determine whether mxArray is empty

C Syntax #include "matrix.h"
bool mxIsEmpty(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsEmpty(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray is empty, and logical 0 (false) otherwise.

Description Use mxIsEmpty to determine whether an mxArray contains no data. An
mxArray is empty if the size of any of its dimensions is 0.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsClass

2-194

mxIsFinite (C and Fortran)

Purpose Determine whether input is finite

C Syntax #include "matrix.h"
bool mxIsFinite(double value);

Fortran
Syntax

integer*4 mxIsFinite(value)
real*8 value

Arguments value
The double-precision, floating-point number that you are testing

Returns Logical 1 (true) if value is finite, and logical 0 (false) otherwise.

Description Call mxIsFinite to determine whether or not value is finite. A number
is finite if it is greater than -Inf and less than Inf.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsInf, mxIsNan

2-195

mxIsFromGlobalWS (C and Fortran)

Purpose Determine whether mxArray was copied from MATLAB global
workspace

C Syntax #include "matrix.h"
bool mxIsFromGlobalWS(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsFromGlobalWS(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array was copied out of the global workspace,
and logical 0 (false) otherwise.

Description mxIsFromGlobalWS is useful for stand alone MAT programs.
mexIsGlobal tells you whether the pointer you pass actually points
into the global workspace.

C
Examples

See matdgns.c and matcreat.c in the eng_mat subdirectory of the
examples directory.

See Also mexIsGlobal

2-196

mxIsInf (C and Fortran)

Purpose Determine whether input is infinite

C Syntax #include "matrix.h"
bool mxIsInf(double value);

Fortran
Syntax

integer*4 mxIsInf(value)
real*8 value

Arguments value
The double-precision, floating-point number that you are testing

Returns Logical 1 (true) if value is infinite, and logical 0 (false) otherwise.

Description Call mxIsInf to determine whether or not value is equal to infinity
or minus infinity. MATLAB software stores the value of infinity in a
permanent variable named Inf, which represents IEEE arithmetic
positive infinity. The value of the variable Inf is built into the system;
you cannot modify it.

Operations that return infinity include

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns
infinity because the result is too large to be represented on your
machine.

If value equals NaN (Not-a-Number), mxIsInf returns false. In other
words, NaN is not equal to infinity.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsFinite, mxIsNaN

2-197

mxIsInt16 (C and Fortran)

Purpose Determine whether mxArray represents data as signed 16-bit integers

C Syntax #include "matrix.h"
bool mxIsInt16(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsInt16(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array stores its data as signed 16-bit integers,
and logical 0 (false) otherwise.

Description Use mxIsInt16 to determine whether or not the specified array
represents its real and imaginary data as 16-bit signed integers.

In C, calling mxIsInt16 is equivalent to calling:

mxGetClassID(pm) == mxINT16_CLASS

In Fortran, calling mxIsInt16 is equivalent to calling:

mxGetClassName(pm) == 'int16'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt32, mxIsInt64,
mxIsUint8, mxIsUint16, mxIsUint32, mxIsUint64

2-198

mxIsInt32 (C and Fortran)

Purpose Determine whether mxArray represents data as signed 32-bit integers

C Syntax #include "matrix.h"
bool mxIsInt32(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsInt32(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array stores its data as signed 32-bit integers,
and logical 0 (false) otherwise.

Description Use mxIsInt32 to determine whether or not the specified array
represents its real and imaginary data as 32-bit signed integers.

In C, calling mxIsInt32 is equivalent to calling:

mxGetClassID(pm) == mxINT32_CLASS

In Fortran, calling mxIsInt32 is equivalent to calling:

mxGetClassName(pm) == 'int32'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt64,
mxIsUint8, mxIsUint16, mxIsUint32, mxIsUint64

2-199

mxIsInt64 (C and Fortran)

Purpose Determine whether mxArray represents data as signed 64-bit integers

C Syntax #include "matrix.h"
bool mxIsInt64(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsInt64(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array stores its data as signed 64-bit integers,
and logical 0 (false) otherwise.

Description Use mxIsInt64 to determine whether or not the specified array
represents its real and imaginary data as 64-bit signed integers.

In C, calling mxIsInt64 is equivalent to calling:

mxGetClassID(pm) == mxINT64_CLASS

In Fortran, calling mxIsInt64 is equivalent to calling:

mxGetClassName(pm) == 'int64'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32,
mxIsUint8, mxIsUint16, mxIsUint32, mxIsUint64

2-200

mxIsInt8 (C and Fortran)

Purpose Determine whether mxArray represents data as signed 8-bit integers

C Syntax #include "matrix.h"
bool mxIsInt8(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsInt8(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array stores its data as signed 8-bit integers,
and logical 0 (false) otherwise.

Description Use mxIsInt8 to determine whether or not the specified array
represents its real and imaginary data as 8-bit signed integers.

In C, calling mxIsInt8 is equivalent to calling:

mxGetClassID(pm) == mxINT8_CLASS

In Fortran, calling mxIsInt8 is equivalent to calling:

mxGetClassName(pm) .eq. 'int8'

See Also mxIsClass, mxGetClassID, mxIsInt16, mxIsInt32, mxIsInt64,
mxIsUint8, mxIsUint16, mxIsUint32, mxIsUint64

2-201

mxIsLogical (C and Fortran)

Purpose Determine whether mxArray is of type mxLogical

C Syntax #include "matrix.h"
bool mxIsLogical(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsLogical(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if pm points to a logical mxArray, and logical 0 (false)
otherwise.

Description Use mxIsLogical to determine whether MATLAB software treats the
data in the mxArray as Boolean (logical). If an mxArray is logical,
MATLAB treats all zeros as meaning false and all nonzero values as
meaning true. For additional information on the use of logical variables
in MATLAB software, type help logical at the MATLAB prompt.

C
Examples

See mxislogical.c in the mx subdirectory of the examples directory.

See Also mxIsClass

2-202

mxIsLogicalScalar (C)

Purpose Determine whether scalar mxArray is of type mxLogical

C Syntax #include "matrix.h"
bool mxIsLogicalScalar(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray is of class mxLogical and has 1-by-1
dimensions, and logical 0 (false) otherwise.

Description Use mxIsLogicalScalar to determine whether MATLAB software
treats the scalar data in the mxArray as logical or numerical. For
additional information on the use of logical variables in MATLAB
software, type help logical at the MATLAB prompt.

mxIsLogicalScalar(pa) is equivalent to:

mxIsLogical(pa) && mxGetNumberOfElements(pa) == 1

See Also mxIsLogical, mxIsLogicalScalarTrue, mxGetLogicals, mxGetScalar

2-203

mxIsLogicalScalarTrue (C)

Purpose Determine whether scalar mxArray of type mxLogical is true

C Syntax #include "matrix.h"
bool mxIsLogicalScalarTrue(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray

Returns Logical 1 (true) if the value of the mxArray’s logical, scalar element is
true, and logical 0 (false) otherwise.

Description Use mxIsLogicalScalarTrue to determine whether the value of a
scalar mxArray is true or false. For additional information on the use
of logical variables in MATLAB software, type help logical at the
MATLAB prompt.

mxIsLogicalScalarTrue(pa) is equivalent to:

mxIsLogical(pa) && mxGetNumberOfElements(pa) == 1 &&
mxGetLogicals(pa)[0] == true

See Also mxIsLogical, mxIsLogicalScalar, mxGetLogicals, mxGetScalar

2-204

mxIsNaN (C and Fortran)

Purpose Determine whether input is NaN (Not-a-Number)

C Syntax #include "matrix.h"
bool mxIsNaN(double value);

Fortran
Syntax

integer*4 mxIsNaN(value)
real*8 value

Arguments value
The double-precision, floating-point number that you are testing

Returns Logical 1 (true) if value is NaN (Not-a-Number), and logical 0 (false)
otherwise.

Description Call mxIsNaN to determine whether or not value is NaN. NaN is the IEEE
arithmetic representation for Not-a-Number. A NaN is obtained as a
result of mathematically undefined operations such as

• 0.0/0.0

• Inf-Inf

The system understands a family of bit patterns as representing NaN. In
other words, NaN is not a single value; rather, it is a family of numbers
that MATLAB software (and other IEEE-compliant applications) uses
to represent an error condition or missing data.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

For additional examples, see findnz.c and fulltosparse.c in the
refbook subdirectory of the examples directory.

See Also mxIsFinite, mxIsInf

2-205

mxIsNumeric (C and Fortran)

Purpose Determine whether mxArray is numeric

C Syntax #include "matrix.h"
bool mxIsNumeric(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsNumeric(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array can contain numeric data. The following
class IDs represent storage types for arrays that can contain numeric
data:

• mxDOUBLE_CLASS

• mxSINGLE_CLASS

• mxINT8_CLASS

• mxUINT8_CLASS

• mxINT16_CLASS

• mxUINT16_CLASS

• mxINT32_CLASS

• mxUINT32_CLASS

• mxINT64_CLASS

• mxUINT64_CLASS

Logical 0 (false) if the array cannot contain numeric data.

Description Call mxIsNumeric to determine whether the specified array contains
numeric data. If the specified array has a storage type that represents

2-206

mxIsNumeric (C and Fortran)

numeric data, mxIsNumeric returns logical 1 (true). Otherwise,
mxIsNumeric returns logical 0 (false).

Call mxGetClassID to determine the exact storage type.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

Fortran
Examples

See matdemo1.F in the eng_mat subdirectory of the examples directory.

See Also mxGetClassID

2-207

mxIsSingle (C and Fortran)

Purpose Determine whether mxArray represents data as single-precision,
floating-point numbers

C Syntax #include "matrix.h"
bool mxIsSingle(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsSingle(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array stores its data as single-precision,
floating-point numbers, and logical 0 (false) otherwise.

Description Use mxIsSingle to determine whether or not the specified array
represents its real and imaginary data as single-precision, floating-point
numbers.

In C, calling mxIsSingle is equivalent to calling:

mxGetClassID(pm) == mxSINGLE_CLASS

In Fortran, calling mxIsSingle is equivalent to calling:

mxGetClassName(pm) .eq. 'single'

See Also mxIsClass, mxGetClassID

2-208

mxIsSparse (C and Fortran)

Purpose Determine whether input is sparse mxArray

C Syntax #include "matrix.h"
bool mxIsSparse(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsSparse(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if pm points to a sparse mxArray, and logical 0 (false)
otherwise. A false return value means that pm points to a full mxArray
or that pm does not point to a legal mxArray.

Description Use mxIsSparse to determine whether pm points to a sparse mxArray.
Many routines (for example, mxGetIr and mxGetJc) require a sparse
mxArray as input.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxgetnzmax.c, mxsetdimensions.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mxGetIr, mxGetJc, mxCreateSparse

2-209

mxIsStruct (C and Fortran)

Purpose Determine whether input is structure mxArray

C Syntax #include "matrix.h"
bool mxIsStruct(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsStruct(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if pm points to a structure mxArray, and logical 0
(false) otherwise.

Description Use mxIsStruct to determine whether pm points to a structure mxArray.
Many routines (for example, mxGetFieldName and mxSetField) require
a structure mxArray as an argument.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxCreateStructArray, mxCreateStructMatrix,
mxGetNumberOfFields, mxGetField, mxSetField

2-210

mxIsUint16 (C and Fortran)

Purpose Determine whether mxArray represents data as unsigned 16-bit integers

C Syntax #include "matrix.h"
bool mxIsUint16(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsUint16(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray stores its data as unsigned 16-bit
integers, and logical 0 (false) otherwise.

Description Use mxIsUint16 to determine whether or not the specified mxArray
represents its real and imaginary data as 16-bit unsigned integers.

In C, calling mxIsUint16 is equivalent to calling:

mxGetClassID(pm) == mxUINT16_CLASS

In Fortran, calling mxIsUint16 is equivalent to calling:

mxGetClassName(pm) .eq. 'uint16'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32,
mxIsInt64, mxIsUint8, mxIsUint32, mxIsUint64

2-211

mxIsUint32 (C and Fortran)

Purpose Determine whether mxArray represents data as unsigned 32-bit integers

C Syntax #include "matrix.h"
bool mxIsUint32(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsUint32(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray stores its data as unsigned 32-bit
integers, and logical 0 (false) otherwise.

Description Use mxIsUint32 to determine whether or not the specified mxArray
represents its real and imaginary data as 32-bit unsigned integers.

In C, calling mxIsUint32 is equivalent to calling:

mxGetClassID(pm) == mxUINT32_CLASS

In Fortran, calling mxIsUint32 is equivalent to calling:

mxGetClassName(pm) .eq. 'uint32'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32,
mxIsInt64, mxIsUint8, mxIsUint16, mxIsUint64

2-212

mxIsUint64 (C and Fortran)

Purpose Determine whether mxArray represents data as unsigned 64-bit integers

C Syntax #include "matrix.h"
bool mxIsUint64(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsUint64(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray stores its data as unsigned 64-bit
integers, and logical 0 (false) otherwise.

Description Use mxIsUint64 to determine whether or not the specified mxArray
represents its real and imaginary data as 64-bit unsigned integers.

In C, calling mxIsUint64 is equivalent to calling:

mxGetClassID(pm) == mxUINT64_CLASS

In Fortran, calling mxIsUint64 is equivalent to calling:

mxGetClassName(pm) .eq. 'uint64'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32,
mxIsInt64, mxIsUint8, mxIsUint16, mxIsUint32

2-213

mxIsUint8 (C and Fortran)

Purpose Determine whether mxArray represents data as unsigned 8-bit integers

C Syntax #include "matrix.h"
bool mxIsUint8(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsUint8(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray stores its data as unsigned 8-bit integers,
and logical 0 (false) otherwise.

Description Use mxIsUint8 to determine whether or not the specified mxArray
represents its real and imaginary data as 8-bit unsigned integers.

In C, calling mxIsUint8 is equivalent to calling:

mxGetClassID(pm) == mxUINT8_CLASS

In Fortran, calling mxIsUint8 is equivalent to calling:

mxGetClassName(pm) .eq. 'uint8'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32,
mxIsInt64, mxIsUint16, mxIsUint32, mxIsUint64

2-214

mxLogical (C)

Purpose Type for logical mxArray

Description All logical mxArrays store their data elements as mxLogical rather
than as bool.

The header file containing this type is:

#include "matrix.h"

Examples See mxislogical.c in the mx subdirectory of the examples directory.

See Also mxCreateLogicalArray

2-215

mxMalloc (C and Fortran)

Purpose Allocate dynamic memory using MATLAB memory manager

C Syntax #include "matrix.h"
#include <stdlib.h>
void *mxMalloc(mwSize n);

Fortran
Syntax

mwPointer mxMalloc(n)
mwSize n

Arguments n
Number of bytes to allocate

Returns A pointer to the start of the allocated dynamic memory, if successful.
If unsuccessful in a stand alone (non-MEX-file) application, mxMalloc
returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the
MEX-file terminates and control returns to the MATLAB prompt.

mxMalloc is unsuccessful when there is insufficient free heap space.

Description MATLAB applications should always call mxMalloc rather than malloc
to allocate memory.

mxMalloc works differently in MEX-files than in stand alone MATLAB
applications. In MEX-files, mxMalloc automatically

• Allocates enough contiguous heap space to hold n bytes.

• Registers the returned heap space with the MATLAB memory
manager.

The MATLAB memory manager maintains a list of all memory allocated
by mxMalloc. The MATLAB memory manager automatically frees
(deallocates) all MEX-file parcels when control returns to the MATLAB
prompt.

In stand alone MATLAB C applications, mxMalloc calls the ANSI C
malloc function.

2-216

mxMalloc (C and Fortran)

By default, in a MEX-file, mxMalloc generates nonpersistent mxMalloc
data. In other words, the memory manager automatically deallocates
the memory as soon as the MEX-file ends. If you want the memory to
persist after the MEX-file completes, call mexMakeMemoryPersistent
after calling mxMalloc. If you write a MEX-file with persistent memory,
be sure to register a mexAtExit function to free allocated memory in
the event your MEX-file is cleared.

When you finish using the memory allocated by mxMalloc, call mxFree
to deallocate the memory.

C
Examples

See mxmalloc.c in the mx subdirectory of the examples directory. For
an additional example, see mxsetdimensions.c in the mx subdirectory
of the examples directory.

See Also mexAtExit, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mxCalloc, mxDestroyArray, mxFree, mxRealloc

2-217

mxRealloc (C and Fortran)

Purpose Reallocate memory

C Syntax #include "matrix.h"
#include <stdlib.h>
void *mxRealloc(void *ptr, mwSize size);

Fortran
Syntax

mwPointer mxRealloc(ptr, size)
mwPointer ptr
mwSize size

Arguments ptr
Pointer to a block of memory allocated by mxCalloc, mxMalloc,
or mxRealloc

size
New size of allocated memory, in bytes

Returns A pointer to the reallocated block of memory, or NULL in C (0 in Fortran)
if size is 0. In a stand alone (non-MEX-file) application, if not enough
memory is available to expand the block to the given size, mxRealloc
returns NULL in C (0 in Fortran). In a MEX-file, if not enough memory is
available to expand the block to the given size, the MEX-file terminates
and control returns to the MATLAB prompt.

Description mxRealloc changes the size of a memory block that has been allocated
with mxCalloc, mxMalloc, or mxRealloc.

If size is 0 and ptr is not NULL in C (0 in Fortran), mxRealloc frees the
memory pointed to by ptr and returns NULL in C (0 in Fortran).

If size is greater than 0 and ptr is NULL in C (0 in Fortran), mxRealloc
behaves like mxMalloc, allocating a new block of memory of size bytes
and returning a pointer to the new block.

Otherwise, mxRealloc changes the size of the memory block pointed
to by ptr to size bytes. The contents of the reallocated memory are
unchanged up to the smaller of the new and old sizes. The reallocated
memory may be in a different location from the original memory, so

2-218

mxRealloc (C and Fortran)

the returned pointer can be different from ptr. If the memory location
changes, mxRealloc frees the original memory block pointed to by ptr.

In a stand alone (non-MEX-file) application, if not enough memory is
available to expand the block to the given size, mxRealloc returns NULL
in C (0 in Fortran) and leaves the original memory block unchanged.
You must use mxFree to free the original memory block.

MATLAB maintains a list of all memory allocated by mxRealloc. By
default, in a MEX-file, mxRealloc generates nonpersistent mxRealloc
data. The memory management facility automatically deallocates the
memory as soon as the MEX-file ends.

If you want the memory to persist after a MEX-file completes, call
mexMakeMemoryPersistent after calling mxRealloc. If you write a
MEX-file with persistent memory, be sure to register a mexAtExit
function to free allocated memory when your MEX-file is cleared.

When you finish using the memory allocated by mxRealloc, call mxFree.
mxFree deallocates the memory.

C
Examples

See mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mexAtExit, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mxCalloc, mxDestroyArray, mxFree, mxMalloc

2-219

mxRemoveField (C and Fortran)

Purpose Remove field from structure array

C Syntax #include "matrix.h"
void mxRemoveField(mxArray *pm, int fieldnumber);

Fortran
Syntax

subroutine mxRemoveField(pm, fieldnumber)
mwPointer pm
integer*4 fieldnumber

Arguments pm
Pointer to a structure mxArray

fieldnumber
Number of the field you want to remove. In C, to remove the
first field, set fieldnumber to 0; to remove the second field, set
fieldnumber to 1; and so on. In Fortran, to remove the first field,
set fieldnumber to 1; to remove the second field, set fieldnumber
to 2; and so on.

Description Call mxRemoveField to remove a field from a structure array. If the field
does not exist, nothing happens. This function does not destroy the field
values. Use mxDestroyArray to destroy the actual field values.

Consider a MATLAB structure initialized to:

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

In C, the field number 0 represents the field name; field number 1
represents field billing; field number 2 represents field test. In
Fortran, the field number 1 represents the field name; field number 2
represents field billing; field number 3 represents field test.

See Also mxAddField, mxDestroyArray, mxGetFieldByNumber

2-220

mxSetCell (C and Fortran)

Purpose Set value of one cell of mxArray

C Syntax #include "matrix.h"
void mxSetCell(mxArray *pm, mwIndex index, mxArray *value);

Fortran
Syntax

mxSetCell(pm, index, value)
mwPointer pm, value
mwIndex index

Arguments pm
Pointer to a cell mxArray

index
Index from the beginning of the mxArray. Specify the number
of elements between the first cell of the mxArray and the
cell you want to set. The easiest way to calculate index in a
multidimensional cell array is to call mxCalcSingleSubscript.

value
The new value of the cell. You can put any kind of mxArray into a
cell. In fact, you can even put another cell mxArray into a cell.

Description Call mxSetCell to put the designated value into a particular cell of
a cell mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should
not be modified. Using mxSetCell* or mxSetField* to modify the cells
or fields of a MATLAB argument causes unpredictable results.

This function does not free any memory allocated for existing data that
it displaces. To free existing memory, call mxDestroyArray on the
pointer returned by mxGetCell before you call mxSetCell.

2-221

mxSetCell (C and Fortran)

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.
For an additional example, see mxcreatecellmatrix.c in the mx
subdirectory of the examples directory.

See Also mxCreateCellArray, mxCreateCellMatrix, mxGetCell, mxIsCell,
mxDestroyArray

2-222

mxSetClassName (C)

Purpose Convert structure array to MATLAB object array

C Syntax #include "matrix.h"
int mxSetClassName(mxArray *array_ptr, const char *classname);

Arguments array_ptr
Pointer to an mxArray of class mxSTRUCT_CLASS

classname
The object class to which to convert array_ptr

Returns 0 if successful, and nonzero otherwise. One cause of failure is that
array_ptr is not a structure mxArray. Call mxIsStruct to determine
whether array_ptr is a structure.

Description mxSetClassName converts a structure array to an object array, to be
saved subsequently to a MAT-file. The object is not registered or
validated by MATLAB software until it is loaded via the LOAD command.
If the specified classname is an undefined class within MATLAB, LOAD
converts the object back to a simple structure array.

See Also mxIsClass, mxGetClassID

2-223

mxSetData (C and Fortran)

Purpose Set pointer to data

C Syntax #include "matrix.h"
void mxSetData(mxArray *pm, void *pr);

Fortran
Syntax

mxSetData(pm, pr)
mwPointer pm, pr

Arguments pm
Pointer to an mxArray

pr
Pointer to an array. Each element in the array contains the real
component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this memory.

Description mxSetData is similar to mxSetPr, except that in C, its second argument
is a void *. Use this on numeric arrays with contents other than
double.

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetData before you call mxSetData.

See Also mxCalloc, mxFree, mxGetData, mxSetPr

2-224

mxSetDimensions (C and Fortran)

Purpose Modify number of dimensions and size of each dimension

C Syntax #include "matrix.h"
int mxSetDimensions(mxArray *pm, const mwSize *dims,

mwSize ndim);

Fortran
Syntax

integer*4 mxSetDimensions(pm, dims, ndim)
mwPointer pm
mwSize dims, ndim

Arguments pm
Pointer to an mxArray

dims
The dimensions array. Each element in the dimensions array
contains the size of the array in that dimension. For example,
in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

ndim
The desired number of dimensions

Returns 0 on success, and 1 on failure. mxSetDimensions allocates heap space to
hold the input size array. So it is possible (though extremely unlikely)
that increasing the number of dimensions can cause the system to run
out of heap space.

Description Call mxSetDimensions to reshape an existing mxArray.
mxSetDimensions is similar to mxSetM and mxSetN; however,
mxSetDimensions provides greater control for reshaping mxArrays that
have more than two dimensions.

mxSetDimensions does not allocate or deallocate any space for the pr
or pi arrays. Consequently, if your call to mxSetDimensions increases
the number of elements in the mxArray, you must enlarge the pr (and
pi, if it exists) arrays accordingly.

2-225

mxSetDimensions (C and Fortran)

If your call to mxSetDimensions reduces the number of elements in the
mxArray, you can optionally reduce the size of the pr and pi arrays
using mxRealloc.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim
equals 5 and dims equals [4 1 7 1 1], the resulting array is given
the dimensions 4-by-1-by-7.

C
Examples

See mxsetdimensions.c in the mx subdirectory of the examples
directory.

See Also mxGetNumberOfDimensions, mxSetM, mxSetN, mxRealloc

2-226

mxSetField (C and Fortran)

Purpose Set structure array field, given field name and index

C Syntax #include "matrix.h"
void mxSetField(mxArray *pm, mwIndex index,

const char *fieldname, mxArray *value);

Fortran
Syntax

mxSetField(pm, index, fieldname, value)
mwPointer pm, value
mwIndex index
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray. Call mxIsStruct to determine
whether pm points to a structure mxArray.

index
Index of the desired element.

In C, the first element of an mxArray has an index of 0, the second
element has an index of 1, and the last element has an index of
N-1, where N is the total number of elements in the mxArray.

In Fortran, the first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an
index of N, where N is the total number of elements in the mxArray.

See mxCalcSingleSubscript for details on calculating an index.

fieldname
The name of the field whose value you are assigning. Call
mxGetFieldNameByNumber or mxGetFieldNumber to determine
existing field names.

value
Pointer to the mxArray you are assigning.

2-227

mxSetField (C and Fortran)

Description Use mxSetField to assign a value to the specified element of the
specified field. In pseudo-C terminology, mxSetField performs the
assignment:

pm[index].fieldname = value;

Note Inputs to a MEX-file are constant read-only mxArrays and should
not be modified. Using mxSetCell* or mxSetField* to modify the cells
or fields of a MATLAB argument causes unpredictable results.

In C, calling:

mxSetField(pa, index, "fieldname", new_value_pa);

is equivalent to calling:

field_num = mxGetFieldNumber(pa, "fieldname");
mxSetFieldByNumber(pa, index, field_num, new_value_pa);

In Fortran, calling:

mxSetField(pm, index, 'fieldname', newvalue)

is equivalent to calling:

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxSetFieldByNumber(pm, index, fieldnum, newvalue)

This function does not free any memory allocated for existing data that
it displaces. To free existing memory, call mxDestroyArray on the
pointer returned by mxGetField before you call mxSetField.

To free memory for structures created using mxSetField, call
mxDestroyArray only on the structure array, not the array used by
mxSetField. If you also call mxDestroyArray on the mxArray value
points to, the same memory is freed twice and this can corrupt memory.

2-228

mxSetField (C and Fortran)

C
Examples

See mxcreatestructarray.c in the mx subdirectory of the examples
directory.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetFieldByNumber,
mxDestroyArray

2-229

mxSetFieldByNumber (C and Fortran)

Purpose Set structure array field, given field number and index

C Syntax #include "matrix.h"
void mxSetFieldByNumber(mxArray *pm, mwIndex index,

int fieldnumber, mxArray *value);

Fortran
Syntax

mxSetFieldByNumber(pm, index, fieldnumber, value)
mwPointer pm, value
mwIndex index
integer*4 fieldnumber

Arguments pm
Pointer to a structure mxArray. Call mxIsStruct to determine
whether pm points to a structure mxArray.

index
Index of the desired element.

In C, the first element of an mxArray has an index of 0, the second
element has an index of 1, and the last element has an index of
N-1, where N is the total number of elements in the mxArray.

In Fortran, the first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an
index of N, where N is the total number of elements in the mxArray.

See mxCalcSingleSubscript for details on calculating an index.

fieldnumber
Position of the field whose value you want to set.

In C, the first field within each element has a fieldnumber of 0,
the second field has a fieldnumber of 1, and so on. The last field
has a fieldnumber of N-1, where N is the number of fields.

2-230

mxSetFieldByNumber (C and Fortran)

In Fortran, the first field within each element has a fieldnumber
of 1, the second field has a fieldnumber of 2, and so on. The last
field has a fieldnumber of N.

value
Pointer to the mxArray you are assigning.

Description Use mxSetFieldByNumber to assign a value to the specified element
of the specified field. mxSetFieldByNumber is almost identical to
mxSetField; however, the former takes a field number as its third
argument and the latter takes a field name as its third argument.

Note Inputs to a MEX-file are constant read-only mxArrays and should
not be modified. Using mxSetCell* or mxSetField* to modify the cells
or fields of a MATLAB argument causes unpredictable results.

In C, calling:

mxSetField(pa, index, "field_name", new_value_pa);

is equivalent to calling:

field_num = mxGetFieldNumber(pa, "field_name");
mxSetFieldByNumber(pa, index, field_num, new_value_pa);

In Fortran, calling:

mxSetField(pm, index, 'fieldname', newvalue)

is equivalent to calling:

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxSetFieldByNumber(pm, index, fieldnum, newvalue)

This function does not free any memory allocated for existing data that it
displaces. To free existing memory, call mxDestroyArray on the pointer
returned by mxGetFieldByNumber before you call mxSetFieldByNumber.

2-231

mxSetFieldByNumber (C and Fortran)

To free memory for structures created using mxSetFieldByNumber, call
mxDestroyArray only on the structure array, not the array used by
mxSetFieldByNumber. If you also call mxDestroyArray on the mxArray
value points to, the same memory is freed twice and this can corrupt
memory.

C
Examples

See mxcreatestructarray.c in the mx subdirectory of the examples
directory. For an additional example, see phonebook.c in the refbook
subdirectory of the examples directory.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxDestroyArray

2-232

mxSetImagData (C and Fortran)

Purpose Set imaginary data pointer for mxArray

C Syntax #include "matrix.h"
void mxSetImagData(mxArray *pm, void *pi);

Fortran
Syntax

mxSetImagData(pm, pi)
mwPointer pm, pi

Arguments pm
Pointer to an mxArray

pi
Pointer to the first element of an array. Each element in the array
contains the imaginary component of a value. The array must
be in dynamic memory; call mxCalloc to allocate this dynamic
memory. If pi points to static memory, memory errors will result
when the array is destroyed.

Description mxSetImagData is similar to mxSetPi, except that in C, its pi argument
is a void *. Use this on numeric arrays with contents other than
double.

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetImagData before you call mxSetImagData.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxCalloc, mxFree, mxGetImagData, mxSetPi

2-233

mxSetIr (C and Fortran)

Purpose Set ir array of sparse mxArray

C Syntax #include "matrix.h"
void mxSetIr(mxArray *pm, mwIndex *ir);

Fortran
Syntax

mxSetIr(pm, ir)
mwPointer pm, ir

Arguments pm
Pointer to a sparse mxArray

ir
Pointer to the ir array. The ir array must be sorted in
column-major order.

Description Use mxSetIr to specify the ir array of a sparse mxArray. The ir array
is an array of integers; the length of the ir array should equal the
value of nzmax.

Each element in the ir array indicates a row (offset by 1) at which a
nonzero element can be found. (The jc array is an index that indirectly
specifies a column where nonzero elements can be found. See mxSetJc
for more details on jc.)

For example, suppose you create a 7-by-3 sparse mxArray named
Sparrow containing six nonzero elements by typing:

Sparrow = zeros(7,3);
Sparrow(2,1) = 1;
Sparrow(5,1) = 1;
Sparrow(3,2) = 1;
Sparrow(2,3) = 2;
Sparrow(5,3) = 1;
Sparrow(6,3) = 1;
Sparrow = sparse(Sparrow);

2-234

mxSetIr (C and Fortran)

The pr array holds the real data for the sparse matrix, which in
Sparrow is the five 1s and the one 2. If there is any nonzero imaginary
data, it is in a pi array.

Subscript ir pr jc Comments

(2,1) 1 1 0 Column 1; ir is 1 because row is 2.
(5,1) 4 1 2 Column 1; ir is 4 because row is 5.
(3,2) 2 1 3 Column 2; ir is 2 because row is 3.
(2,3) 1 2 6 Column 3; ir is 1 because row is 2.
(5,3) 4 1 Column 3; ir is 4 because row is 5.
(6,3) 5 1 Column 3; ir is 5 because row is 6.

Notice how each element of the ir array is always 1 less than the row
of the corresponding nonzero element. For instance, the first nonzero
element is in row 2; therefore, the first element in ir is 1 (that is, 2
– 1). The second nonzero element is in row 5; therefore, the second
element in ir is 4 (5 – 1).

The ir array must be in column-major order. That means that the ir
array must define the row positions in column 1 (if any) first, then the
row positions in column 2 (if any) second, and so on through column N.
Within each column, row position 1 must appear prior to row position
2, and so on.

mxSetIr does not sort the ir array for you; you must specify an ir
array that is already sorted.

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetIr before you call mxSetIr.

C
Examples

See mxsetnzmax.c in the mx subdirectory of the examples directory. For
an additional example, see explore.c in the mex subdirectory of the
examples directory.

2-235

mxSetIr (C and Fortran)

See Also mxCreateSparse, mxGetIr, mxGetJc, mxSetJc, mxFree

2-236

mxSetJc (C and Fortran)

Purpose Set jc array of sparse mxArray

C Syntax #include "matrix.h"
void mxSetJc(mxArray *pm, mwIndex *jc);

Fortran
Syntax

mxSetJc(pm, jc)
mwPointer pm, jc

Arguments pm
Pointer to a sparse mxArray

jc
Pointer to the jc array

Description Use mxSetJc to specify a new jc array for a sparse mxArray. The jc
array is an integer array having n+1 elements, where n is the number of
columns in the sparse mxArray.

If the jth column of the sparse mxArray has any nonzero elements:

• jc[j] is the index in ir, pr, and pi (if it exists) of the first nonzero
element in the jth column.

• jc[j+1]-1 is the index of the last nonzero element in the jth column.

The number of nonzero elements in the jth column of the sparse
mxArray is:

jc[j+1] - jc[j];

For the jth column of the sparse mxArray, jc[j] is the total number of
nonzero elements in all preceding columns. The last element of the jc
array, jc[number of columns], is equal to nnz, which is the number of
nonzero elements in the entire sparse mxArray.

For example, consider a 7-by-3 sparse mxArray named Sparrow
containing six nonzero elements, created by typing:

Sparrow = zeros(7,3);

2-237

mxSetJc (C and Fortran)

Sparrow(2,1) = 1;
Sparrow(5,1) = 1;
Sparrow(3,2) = 1;
Sparrow(2,3) = 2;
Sparrow(5,3) = 1;
Sparrow(6,3) = 1;
Sparrow = sparse(Sparrow);

The contents of the ir, jc, and pr arrays are listed in this table.

Subscript ir pr jc Comment

(2,1) 1 1 0 Column 1 contains two
nonzero elements, with rows
designated by ir[0] and ir[1]

(5,1) 4 1 2 Column 2 contains one nonzero
element, with row designated
by ir[2]

(3,2) 2 1 3 Column 3 contains three
nonzero elements, with rows
designated by ir[3],ir[4],
and ir[5]

(2,3) 1 2 6 There are six nonzero elements
in all.

(5,3) 4 1

(6,3) 5 1

As an example of a much sparser mxArray, consider a 1000-by-8 sparse
mxArray named Spacious containing only three nonzero elements. The
ir, pr, and jc arrays contain the values listed in this table.

Subscript ir pr jc Comment

(73,2) 72 1 0 Column 1 contains no nonzero
elements.

2-238

mxSetJc (C and Fortran)

Subscript ir pr jc Comment

(50,3) 49 1 0 Column 2 contains one nonzero
element, with row designated
by ir[0].

(64,5) 63 1 1 Column 3 contains one nonzero
element, with row designated
by ir[1].

2 Column 4 contains no nonzero
elements.

2 Column 5 contains one nonzero
element, with row designated
by ir[2].

3 Column 6 contains no nonzero
elements.

3 Column 7 contains no nonzero
elements.

3 Column 8 contains no nonzero
elements.

3 There are three nonzero
elements in all.

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetJc before you call mxSetJc.

C
Examples

See mxsetdimensions.c in the mx subdirectory of the examples
directory. For an additional example, see explore.c in the mex
subdirectory of the examples directory.

See Also mxCreateSparse, mxGetIr, mxGetJc, mxSetIr, mxFree

2-239

mxSetM (C and Fortran)

Purpose Set number of rows in mxArray

C Syntax #include "matrix.h"
void mxSetM(mxArray *pm, mwSize m);

Fortran
Syntax

mxSetM(pm, m)
mwPointer pm
mwSize m

Arguments pm
Pointer to an mxArray

m
The desired number of rows

Description Call mxSetM to set the number of rows in the specified mxArray. The
term rows means the first dimension of an mxArray, regardless of the
number of dimensions. Call mxSetN to set the number of columns.

You typically use mxSetM to change the shape of an existing mxArray.
Note that mxSetM does not allocate or deallocate any space for the pr,
pi, ir, or jc arrays. Consequently, if your calls to mxSetM and mxSetN
increase the number of elements in the mxArray, you must enlarge the
pr, pi, ir, and/or jc arrays. Call mxRealloc to enlarge them.

If your calls to mxSetM and mxSetN end up reducing the number of
elements in the mxArray, you may want to reduce the sizes of the pr,
pi, ir, and/or jc arrays in order to use heap space more efficiently.
However, reducing the size is not mandatory.

C
Examples

See mxsetdimensions.c in the mx subdirectory of the examples
directory. For an additional example, see sincall.c in the refbook
subdirectory of the examples directory.

See Also mxGetM, mxGetN, mxSetN

2-240

mxSetN (C and Fortran)

Purpose Set number of columns in mxArray

C Syntax #include "matrix.h"
void mxSetN(mxArray *pm, mwSize n);

Fortran
Syntax

mxSetN(pm, n)
mwPointer pm
mwSize n

Arguments pm
Pointer to an mxArray

n
The desired number of columns

Description Call mxSetN to set the number of columns in the specified mxArray. The
term columns always means the second dimension of a matrix. Calling
mxSetN forces an mxArray to have two dimensions. For example, if pm
points to an mxArray having three dimensions, calling mxSetN reduces
the mxArray to two dimensions.

You typically use mxSetN to change the shape of an existing mxArray.
Note that mxSetN does not allocate or deallocate any space for the pr,
pi, ir, or jc arrays. Consequently, if your calls to mxSetN and mxSetM
increase the number of elements in the mxArray, you must enlarge the
pr, pi, ir, and/or jc arrays.

If your calls to mxSetM and mxSetN end up reducing the number of
elements in the mxArray, you may want to reduce the sizes of the pr,
pi, ir, and/or jc arrays in order to use heap space more efficiently.
However, reducing the size is not mandatory.

C
Examples

See mxsetdimensions.c in the mx subdirectory of the examples
directory. For an additional example, see sincall.c in the refbook
subdirectory of the examples directory.

See Also mxGetM, mxGetN, mxSetM

2-241

mxSetNzmax (C and Fortran)

Purpose Set storage space for nonzero elements

C Syntax #include "matrix.h"
void mxSetNzmax(mxArray *pm, mwSize nzmax);

Fortran
Syntax

mxSetNzmax(pm, nzmax)
mwPointer pm
mwSize nzmax

Arguments pm
Pointer to a sparse mxArray.

nzmax
The number of elements that mxCreateSparse should allocate to
hold the arrays pointed to by ir, pr, and pi (if it exists). Set nzmax
greater than or equal to the number of nonzero elements in the
mxArray, but set it to be less than or equal to the number of rows
times the number of columns. If you specify an nzmax value of 0,
mxSetNzmax sets the value of nzmax to 1.

Description Use mxSetNzmax to assign a new value to the nzmax field of the specified
sparse mxArray. The nzmax field holds the maximum possible number
of nonzero elements in the sparse mxArray.

The number of elements in the ir, pr, and pi (if it exists) arrays must
be equal to nzmax. Therefore, after calling mxSetNzmax, you must
change the size of the ir, pr, and pi arrays. To change the size of one
of these arrays:

1 Call mxRealloc with a pointer to the array, setting the size to the
new value of nzmax.

2 Call the appropriate mxSet routine (mxSetIr, mxSetPr, or mxSetPi)
to establish the new memory area as the current one.

Two ways of determining how big you should make nzmax are

2-242

mxSetNzmax (C and Fortran)

• Set nzmax equal to or slightly greater than the number of nonzero
elements in a sparse mxArray. This approach conserves precious
heap space.

• Make nzmax equal to the total number of elements in an mxArray.
This approach eliminates (or, at least reduces) expensive
reallocations.

C
Examples

See mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mxGetNzmax, mxRealloc

2-243

mxSetPi (C and Fortran)

Purpose Set new imaginary data for mxArray

C Syntax #include "matrix.h"
void mxSetPi(mxArray *pm, double *pi);

Fortran
Syntax

mxSetPi(pm, pi)
mwPointer pm, pi

Arguments pm
Pointer to a full (nonsparse) mxArray

pi
Pointer to the first element of an array. Each element in the array
contains the imaginary component of a value. The array must
be in dynamic memory; call mxCalloc to allocate this dynamic
memory. If pi points to static memory, memory leaks and other
memory errors may result.

Description Use mxSetPi to set the imaginary data of the specified mxArray.

Most mxCreate* functions optionally allocate heap space to hold
imaginary data. If you tell an mxCreate* function to allocate heap
space—for example, by setting the ComplexFlag to mxCOMPLEX in C (1 in
Fortran) or by setting pi to a non-NULL value in C (a nonzero value in
Fortran)—you do not ordinarily use mxSetPi to initialize the created
mxArray’s imaginary elements. Rather, you call mxSetPi to replace the
initial imaginary values with new ones.

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetPi before you call mxSetPi.

C
Examples

See mxisfinite.c and mxsetnzmax.c in the mx subdirectory of the
examples directory.

See Also mxGetPi, mxGetPr, mxSetImagData, mxSetPr, mxFree

2-244

mxSetPr (C and Fortran)

Purpose Set new real data for mxArray

C Syntax #include "matrix.h"
void mxSetPr(mxArray *pm, double *pr);

Fortran
Syntax

mxSetPr(pm, pr)
mwPointer pm, pr

Arguments pm
Pointer to a full (nonsparse) mxArray

pr
Pointer to the first element of an array. Each element in the array
contains the real component of a value. The array must be in
dynamic memory; call mxCalloc to allocate this dynamic memory.
If pr points to static memory, memory leaks and other memory
errors can result.

Description Use mxSetPr to set the real data of the specified mxArray.

All mxCreate* calls allocate heap space to hold real data. Therefore,
you do not ordinarily use mxSetPr to initialize the real elements of a
freshly created mxArray. Rather, you call mxSetPr to replace the initial
real values with new ones.
This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetPr before you call mxSetPr.

C
Examples

See mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mxGetPi, mxGetPr, mxSetData, mxSetPi, mxFree

2-245

mxSetProperty (C and Fortran)

Purpose Set value of property of MATLAB class object

C Syntax #include "matrix.h"
void mxSetProperty(mxArray *pa, mwIndex index,

const char *propname, const mxArray *value);

Fortran
Syntax

mwPointer mxSetProperty(pa, index, propname, value)
mwPointer pa, value
mwIndex index
character*(*) propname

Arguments pa
Pointer to an mxArray which is a class object.

index
Index of the desired element of the object array.

In C, the first element of an mxArray has an index of 0, the second
element has an index of 1, and the last element has an index of
N-1, where N is the total number of elements in the mxArray.

In Fortran, the first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an
index of N, where N is the total number of elements in the mxArray.

propname
Name of the property whose value you are assigning.

value
Pointer to the mxArray you are assigning.

Description Use mxSetProperty to assign a value to the specified property. In
pseudo-C terminology, mxSetProperty performs the assignment:

pa[index].propname = value;

2-246

mxSetProperty (C and Fortran)

mxSetProperty makes a copy of the value before assigning it as the
new property value. This may be a concern if the property uses a large
amount of memory.

See Also mxGetProperty

2-247

mxSetProperty (C and Fortran)

2-248

Index

IndexA
allocating memory 2-83

B
buffer

defining output 2-14

D
deleting

named matrix from MAT-file 2-21
directory

getting 2-24

E
engClose 2-2
engEvalString 2-3
engGetVariable 2-5
engGetVisible 2-7
engine

data type 2-8
engines

getting and putting matrices into 2-5 2-17
starting 2-2

engOpen 2-10
engPutVariable 2-17
engSetVisible 2-19
errors

control response to 2-69
issuing messages 2-45 2-47

G
getting

directory 2-24

M
MAT-files

deleting named matrix from 2-21
getting and putting matrices into 2-31 2-36

to 2-37
getting next matrix from 2-27
getting pointer to 2-26
opening and closing 2-20 2-34

matClose 2-34
matDeleteMatrix 2-21
matfile

data type 2-22
matGetDir 2-24
matGetFp 2-26
matGetNextVariable 2-27
matGetNextVariableInfo 2-29
matGetVariable 2-31
matGetVariableInfo 2-32
MATLAB engines

starting 2-2
matOpen 2-20
matPutVariable 2-36
matPutVariableAsGlobal 2-37
matrices

putting into engine’s workspace 2-17
putting into MAT-files 2-37

MEX-files
entry point to 2-51

mexCallMATLAB 2-40
mexCallMATLABWithTrap 2-43
mexErrMsgIdAndTxt 2-45 2-72
mexErrMsgTxt 2-47 2-73
mexEvalString 2-49
mexEvalStringWithTrap 2-50
mexFunction 2-51
mexGetVariable 2-55
mexPrintf 2-64
mexSetTrapFlag 2-69
mwIndex 2-74
mwpointer 2-75

Index-1

Index

mwSize 2-76
mxaddfield 2-77
mxarray

data type 2-78
mxarraytostring 2-80
mxassert 2-81
mxasserts 2-82
mxcalcsinglesubscript 2-83
mxcalloc 2-86
mxchar 2-88
mxclassid 2-89
mxclassidfromclassname 2-92
mxcomplexity 2-93
mxcopycharactertoptr 2-94
mxcopycomplex16toptr 2-95
mxcopycomplex8toptr 2-96
mxcopyinteger1toptr 2-97
mxcopyinteger2toptr 2-98
mxcopyinteger4toptr 2-99
mxcopyptrtocharacter 2-100
mxcopyptrtocomplex16 2-101
mxcopyptrtocomplex8 2-102
mxcopyptrtointeger1 2-103
mxcopyptrtointeger2 2-104
mxcopyptrtointeger4 2-105
mxcopyptrtoptrarray 2-106
mxCopyPtrToReal4 2-107
mxcopyptrtoreal8 2-108
mxcopyreal4toptr 2-109
mxcopyreal8toptr 2-110
mxcreatecellarray 2-111
mxcreatecellmatrix 2-113
mxcreatechararray 2-114
mxcreatecharmatrixfromstrings 2-116
mxcreatedoublematrix 2-118
mxcreatedoublescalar 2-120
mxcreatelogicalarray 2-121
mxcreatelogicalmatrix 2-123
mxcreatelogicalscalar 2-124
mxcreatenumericarray 2-125

mxcreatenumericmatrix 2-128
mxcreatesparse 2-131
mxcreatesparselogicalmatrix 2-133
mxcreatestring 2-134
mxcreatestructarray 2-135
mxcreatestructmatrix 2-137
mxdestroyarray 2-139
mxduplicatearray 2-140
mxfree 2-141
mxgetcell 2-143
mxgetchars 2-145
mxgetclassid 2-146
mxgetclassname 2-147
mxgetdata 2-148
mxgetdimensions 2-149
mxgetelementsize 2-151
mxgeteps 2-152
mxgetfield 2-153
mxgetfieldbynumber 2-156
mxgetfieldnamebynumber 2-159
mxgetfieldnumber 2-161
mxgetimagdata 2-163
mxgetinf 2-164
mxgetir 2-165
mxgetjc 2-167
mxgetlogicals 2-168
mxgetm 2-169
mxgetn 2-171
mxgetnan 2-173
mxgetnumberofdimensions 2-174
mxgetnumberofelements 2-175
mxgetnumberoffields 2-176
mxgetnzmax 2-177
mxgetpi 2-178
mxgetpr 2-179
mxGetProperty 2-180
mxgetscalar 2-182
mxgetstring 2-184
mxiscell 2-186
mxischar 2-187

Index-2

Index

mxisclass 2-188
mxiscomplex 2-191
mxisdouble 2-192
mxisempty 2-194
mxisfinite 2-195
mxisfromglobalws 2-196
mxisinf 2-197
mxisint16 2-198
mxisint32 2-199
mxisint8 2-201
mxislogical 2-202
mxislogicalscalar 2-203
mxislogicalscalartrue 2-204
mxisnan 2-205
mxisnumeric 2-206
mxissingle 2-208
mxissparse 2-209
mxisstruct 2-210
mxisuint16 2-211
mxisuint32 2-212
mxisuint64 2-213
mxisuint8 2-214
mxlogical 2-215
mxmalloc 2-216
mxrealloc 2-218
mxremovefield 2-220
mxsetcell 2-221
mxsetclassname 2-223
mxsetdata 2-224

mxsetdimensions 2-225
mxsetfield 2-227
mxsetfieldbynumber 2-230
mxsetimagdata 2-233
mxsetir 2-234
mxsetjc 2-237
mxsetm 2-240
mxsetn 2-241
mxsetnzmax 2-242
mxsetpi 2-244
mxsetpr 2-245
mxSetProperty 2-246

O
opening MAT-files 2-20 2-34

P
pointer

to MAT-file 2-26
printing 2-61 2-63

S
starting

MATLAB engines 2-2
string

executing statement 2-3

Index-3

	toc
	API Reference
	MAT-File Access
	MX Array Manipulation
	MEX-Files
	MATLAB Engine

	API Reference
	Index

